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ABSTRACT

Maintenance, a key element of Integrated Logistice Support, plays a very
vital role throughout an equipment/system planned life-cycle. Maintenance
costs contribute a major portion of the life cycle costs of an equipment or
system, Past historical records have shown that the cost associated with
system maintenance is immense and usually takes up a large portion of the
annual operating expenditure. Besides the costs, sound maintenance efforts
contribute to better operational availability and reliability of a system.
Therefore, the objective is to attain the proper balance of operations between
performance and effectiveness, and logistics support, which largely includes
maintenance, spares requirements, and the available budget. Adequate
maintenance is essential to ensure the effective and economical support of an
equipment or system. Therefore there is a need to design optimal maintenance
policies to maximize appropriate measures of system effectiveness. These can
be either to minimize operational and maintenance costs, to improve overall
system reliability or to maximize operational availability.

In this thesis, various maintenance scenarios are examined and the
corresponding optimal maintenance actions are planned to take place at
intervals chosen 80 as to maximize an appropriate measures of effectiveness.
Preventive maintenance policies are also planned so that the overall reliability
of the system is always kept above a specified minimum reliability level, while
. either keeping the cost per unit time to a minimum or maximizing the

operational availability, subject to cost constraints.
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THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this
research may not have been exercised for all cases of interest. While every
effort has been made, within the time available, to ensure that the programs
are free of computational and logic errors, they cannot be considered validated.
Any application of these programs without additional verification is at the risk

of the user.
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I. INTRODUCTION

A, MAINTENANCE
Maintenance constitutes a series of actions to be taken to restore or retain
an equipment or system in an effective operational state, [Ref. 1].

Maintenance occurs at three levels:

* Organizational Maintenance.
* Intermediate Maintenance.

* Depot Maintenance.

The Organizational Maintenance activity is performed by the ship’s staff,
for frigates or equivalent, using the onboard spares, tools, test equipment, and
the documentation furnished. For smaller ships and patrol craft,
Organizational Maintenance is carried out with the assistance of the Squadron
Support Teams. Intermediate Maintenance is performed at fleet workshops,
while Depot Maintenance is carried out at the naval dockyard or by

. commercial shipyards and firms.
Any equipment or system introduced into the service needs to be
maintained adequately so that it is readily available to perform a mission

successfully at an acceptable performance level. Besides that, maintenance




helps to extend the useful life of the equipment/system and ensures the safety
of personnel using it.

Basically, maintenance can be broadly divided into two types:

¢ Preventive Maintenance.

¢ Corrective Maintenance,

Figure 1,1 shows the various maintenance forms.

MAINTENANCE
PREVENTIVE MAINTENANCE CORRECTIVE MAINTENANCE
simple planned minimal major
preventive overhaul repairs repairs
maintenance

Figure 1.1 The Forms of Maintenance

Preventive maintenance is scheduled maintenance that is organized and
carried out in accordance with the documentation and records at a
predetermined time following a predetermined plan. Preventive maintenance

is normally associated with maintenance that occurs when the system is still




operating. The main aim of preventive maintenance actions is to improve the
overall system reliability and to avoid sudden or unexpected failures which

may be cata:trophic. Preventive maintenance can be sub-divided into:

¢ Simple Preventive Maintenance.

¢ Complete Overhaul/Preventive Replacement.

Simple preventive maintenance actions usually consist of inspections,
adjustments, tuning, cleaning, lubrication, minor calibration, and replacement
of worn out components and parts before they actually fail. This type of
maintenance is usually performed at the Organizational Maintenancelevel and
often it does not affect the downtime of the equipment/system.(The downtime
for these maintenance actions is usually negligible).

Complete overhauls are carried out to bring the state of the deteriorating
system back to "as good as new condition", and to prevent major impending
failures. This type of maintenance is usually carried out at the Depot
Maintenancs level during planned refit periods and it usually incurs some
significant downtime. Preventive replacements are carried out when the
overhaul is not economical or when the parts are non-repairable.

Corrective maintenance is the unscheduled maintenance carried out to
restore a failed system to its operating state. Corrective maintenance can be

subdivided into:




* Minimal Repair.
* Major Overhaul/Failure Replacement.

Minimal repairs are minor repairs or component replacements carried out
on failed components or assemblies that restore the system to its operational
state without significantly improving the overall condition of the system. This
type of maintenance is usually carried out at the Organizational Maintenance
level,

Major overhauls are carried out when the system experiences a sudden
major failure and the work has to be carried out at the Intermediate
Maintenance level or at the Depot Maintenance level. Failure replacement
usually occurs when the system is beyond economical repair or when the parts

are non-repairable.

B. MAINTENANCE POLICIES

Our main goal is to design a maintenance policy that will maximize
appropriate measures of system effectiveness; this can be either to minimize
operational and maintenance costs, to improve overall system reliability or to
maximize operational availability (uptime). The most relevant measure of
effectiveness used is to maximize a suitable measure of operational availability
subject to budget constraints. Ideally, we would like to carry out many

preventive maintenance and inspection routines to ensure that the system is

in an optimum operating condition, to avoid sudden and catastrophic failures




and damage to the system, and also to prevent accidents which may be

e detrimental to the people working in the vicinity. On the other hand, excessive
preventive maintenance actione may not only be unnecessarily costly, requiring

many manhours but may actually prematurely sge equipment. Therefore, we

r.eed a balance or trade-oft between two extremes. Our objective, then, is to

. select an optimal maintenance policy for the particular equipment or system,

and to decide when to carry out the associated maintenance routines. Some

conceivable maintenance policies ace the following:

" * No preventive maintenance and corrective maintenance is carried out.
. The system is replaced at a fixed age. When the system fails before this
age it is replaced with a new one. This type of maintenance is normally

associated with low-level subsystems: items such as components, sealed

modules or other non-repairable parts. Some common examples are the

magnetron in the radar transmitter unit and the belts found in motors.

* No preventive maintenance is carried out. The system is replaced at a
fixed age. For failures that occur in between the planned replacement
age, minimal repairs are carried out to restore the system to an
operational stute. This type of maintenance is usually associated with a
system consisting of several components such that when a component
fails the system fails, and replacing the component restores the system
to operation. Minimal repairs are often carried out in the field, i.e.
onboard ships or at a forward air base,

e * The system is renewed at a fixed age either by replacement or overhaul

after which the system is "as good as new". Failures in between the

. planned age replacement can be classified into type I and type II. Type

N . I failures are simple failures which are remedied by minimal repairs
using the support elements ontoard ships, and Type II failures are major
failures which require base support facilities and are rectified by part
replacement or complete overhaul,

¢ Both preventive and corrective maintenance actions are employed.
Preventive maintenance is planned at some time interval to improve the




. Other classes of distributions which exhibit wear out or wear-in such as
NBU (new bettter than used) or UBN (used bettter than new) can also be used
and are discussed in detail in Barlow and Proscham. [Ref, 2].

Most of the systems which are newly installed onboard the ships initially
have a decreasing failure rate, sometimes referred to as the infant mortality
phase or running-in period. Thei the failure rate becomes rather constant for
some time and finally increasing, exhibiting wear out. In reliability, such
failure rate functions are said to have a "bathtub" shape. The running-in

period is usually under contractual obligation.

D. FAILURE RATE

The failure rate or hazard rate is one of the most important statistical
characteristics of any equipment/system frequently used in maintenance or
replacement studies.

The failure rate, h(t), is usually defined as the "instantaneous” conditional
probability of failure at age t, given that it has survived to age t. When F has
density £, h(t) is given by

£(t)
hit) = —m (L1)
1 -7rF(t)
The failure rate h(t) can also be expressed in terms of the hazard

function, H(t)




dH (t)
h(t) = ——— (1.2)
at

The hazard function is related to the distribution function by the
following relationship

H(t) = - log {1 - F(t)) (1.8)

E. RELIABILITY

When deciding upon system maintenance policies, the frequency of
maintenance actions becomes a significant parameter. The frequency of
maintenance for a given system is highly dependent on the reliability of that
system. In general, as the reliability of a system increases, the frequency of
maintenance actions will decrease; conversely, the frequency of maintenance
actions will increase as system reliability is degraded. [Ref. 1]

The reliability function or survival function R(t) is given by

RO =1-Fo=["f0ad (14)

R(t) is the probability that a new system will perform its mission
satisfactorily for at least a certain time t. If T is the time to failure of the
system then

R(t) = P(T > ¢t) (L.5)

Sometimes we are interested in the chance of survival of the system in

the future given that it hes survived up till now. This is called the conditional

survival function. So if T is the time to failure of the system with the survival




function [1 - F(t)], then the reliability of the system, R(t;a), at some agea 20
is given by
[1 - F(t+a)]

R(t;a) = (1.8)
[1 - ¥F(a)]

F. AVAILABILITY

Availability is a measure of system readiness and it is one of the most
important measures of effectiveness usually employed in mission-oriented
situations especially in the military environment. Operational availability is
the probability that a system or equipment, when used under stated conditions
in an actual operational environment, will operate satisfactorily when called
upon [Ref 1). System availability is influenced both by the inherent failure-
proneness of the system and by the time and resources (support elements) it
takes to restore a failed system to service. [Ref. 3). Times to failure or 'up
times' and to restoration or 'down times' may vary considerably, and not
necessarily independenily, depending upon the mode of failure, the time
required to diagnose the failure, availability of special tools, test equipment,
and spare parts, and the proper decumentation and the required personnel
gkills. The long-run availability or steady state is expressed as follows:

E[D]

E[U] + E[D]




where

E[U] is the expected uptime of the system

E[D] is the expected downtime of the system

For a system operating at sea the availability at equation (1.8) is usually
expressed as

MTRM
(1.8)

| = P
where
MTBM is the mean time between maintenance
MDT is the mean downtime, which includes the mean active
maintenance time (M), expected logistics delay time (LDT) and the expected

administrative delay time (ADT). The tmean active maintenance time includes

the expected time for preventive and corractive maintenance.

G. MAINTENANCE TIME DISTRIBUTION

The time required to carry out simple preventive maintenance actions and
overhauls can generally be modeled as normally distributed with mean u and
standard deviation 0. Most of these tasks are standurd and are carried out in
accordance with the planned maintenance schedules; which stipulates the
procedures to follow, spares, material,tools and test equipment that are

required to perform the maintenance actions. [Ref 4). The tasks usually

requires a fixed amount of time to accomplish with very little variation.




The time required for corrective maintenance actions can be divided into

three basic categories:

* Active repair time.
¢ Logistics delay.
¢ Administrative delay.

1. Active Repair Time
Active repair time depends on the environment, state of equipment
(hot or cold), and skill level of the technician; and it can be sub-divided into the
following categories:
* Recognition or detection ( often the time until actual occurrence of a
failure and its recognition is not known).
* Localization or diagnosis.
* Correction or repair.

¢ Verification or check.

2. Logistics Delay Time
Logistics delay time constitutes downtime that is expended while
waiting for the availability of a spare part, waiting for a special tool or test
equipment to perform repair, waiting for transportation, and waiting to use a

facility required for the repair.

11




3. Administrative Delay Time
Administrative delay time constitutes downtime of adminstrative

nature, such as personnel assignment priority and organizational constraint.

4. Distribution

The distributions most commonly used to describe the downtime for
corrective maintenance actions are exponential and log-normal. The
exponential distribution tends to fit the type of equipment that requires
relatively short durations of repair and usually corresponds to the replacement
of a failed unit. Occasionally, much longer times may be required for major
repair or for gspares. The lognormal distribution is useful for situations where
there are few downtimes of short duration, a large number of downtirnes
closely grouped about scme modal value and a few downtimes of long
durations,

If X, the downtime, is a random variable having the lognormal
distribution given by the probability density function

- ’ =
S®) = Ll Dsx<o (19)
210

then the logarithm of X is Normal with mean p and variance 6 In the thesis
We shall study several maintenance policies applicable to systems onboard
ships. In Chapter II we introduce optimal maintenance for three types of
policies. These are considered in detail in Chapters III, IV and V.

12




II. OPTIMAL MAINTENANCE POLICIES AND MATHEMATICAL
MODELS

In the commercial environment determination of the optimum
maintenance policy and time is of great economic importance. However, in
many military situations, failure of a system in an operational environment is
not only going to be more costly, but dangerous and may jeopardise the success
of a mission. If a system has an increasing failure rate, such as the failure rate
of a Weibull distribution with shape parameter > 1, it may be wise to replace
or overhaul the system before it has aged too greatly. [Ref. 5]. This is very true
for systems onboard the ships especially when they are operating many
hundreds of miles from their home base and hence the support elements are
not completely and readily available. A failure at sea may be catastrophic, in
terms of cost and operational requirements. Although we can not completely
avoid failures, however we can reduce the chance or probability of such
catastrophic failures. This can be done by studying the failure distributions
and then employing appropriate maintenance actions to maximize the various
measures of effectiveness.

The appropriate maintenance actions could be either preventive
maintenance, failure replacement, minimal repair and preventive replacement

or complete overhaul. The objective of a maintenance policy is to find a

13




sequence of times for carrying out the various maintenance actions that
maximizes the appropriate measures of effectiveness over the operational and
maintenance cycle of the system.

The most commonly used maintenance policy is the policy based on age,
usually referred as the age replacement policy. Sometimes the maintenance
policy is based on the running hours of the system or equipment. If a system
consists of many identical components, then the maintenance of these
components are done in a block or group and is called the block replacement
policy, such as the replacement of the diodes in the exciter unit of an
alternator where the accessibility is poor.

A recent survey of Preventive Maintenance Models for stochastically
deteriorating single-unit system [Ref. 6] highlighted the use of some
optimization models for repair and replacement policy evaluation, Most of
these models were based on minimizing the long-run expected costs per unit
time of replacement and minimal repair as the measure of effectiveness. The
basic minimal repair model developed by Barlow and Hunter [Ref. 7] has been
generalised and modified by many authors to fit more realistic situations.

Minimal repair models generally assume the following: [Ref. 6].

* The system’s failure rate function is increasing.

* Minimal repairs do not affect the failure rate of the system.

14




* The cost of a minimal repair C; is less than the cost of replacing the
entire system C,,

» System failures are immediately detected.

The long-run expected cost per unit time using a replacement age t for

the basic model is given by

cw = EL.A.,.Q:_LSB 2.1)

where N(t) represents the expected number of failures (minimal repairs)
during the period (0,t].

Using the basic minimal repair model as developed by Barlow and Hunter
[(Ref. 7], Tilquin and Cléroux [Ref. 8] investigated an optimal replacement
policy for the case where an adjustment cost C,(ik), incurred at age ik,
i=1,28,. and k > 0, is added to the basic costs C, and C, They showed that
the long-run expected cost per unit time is given by

C, N(l) +C, + C'!(l'(f)) (2.2)

cw = n

where
')
c‘.(‘(‘)) - § C‘(‘k)

and v(t) represents the number of adjustments in the period (0,t]. Tilquin and
Cléroux [Ref, 8] showed that the global minimum for equation (2.2) exists in
the interval [0,0c] when the life distribution is IFR.

15




In the thesis we will examine the various maintenance scenarios here
called the policies and then based on these we will formulate the appropriate
mathematical models using the stochastic and reliability theory. This
mathematical models will depend on the desired measures of effectiveness
required. ['rom these models we can nbtain the times for carrying out the
appropriate maintenance actions. The measure of effectiveness that will be '

considered are:

* Minimizing the costs.
¢ Maximizing availability.
* Mission reliability.

The maintenance actions will be different for various measures of
effectiveness and it is up to the Decision Maker to select which one is suitable
for his scenario.

The following maintenance policies are of interest:

* Policy] Age Replacement,
* Policy II. Minimal Repair with Age Replacement.

* Policy III Minimal Repair, Failure Replacement /
Overhaul, Preventive Replacement /
Overhaul.

These policies are discussed in the following chapters.




III. POLICY I (AGE REPLACEMENT)

The system is replaced at the time of failure or at some fixed time t,
whichever comes first, (Instead of replacement, we could also overhaul the
system,which on completion of overhaul is assumed as "good as new").

This type of scenario is usually associated with the repair by replacement
policy often adopted at sea and applies to modules and sub-assemblies of
equipment which requires support elements not available at sea. In lieu of
repairing these modules and sub-assemblies at sea, sufficient spares are
carried onboard or prepositioned at the forward operating areas so as to
accomplish the respective missions successfully. The optimal number of spare
requirements are based on the measures of offectiveness desired.

The age at which the operating system is replaced depends on the
following factors:

* Failure distribution.
* Costs of failure and preventive replacement.
* Downtime of failure and preventive replacement.
* Measure of effectiveness:
- Minimize costs.

- Maximize availability.
- Mission reliability.

17




When evaluating this policy the following assumptions are made:

* Planned replacements are less costly than failure replacements.

¢ The mean downtime for a planned replacement is less than that for a
failure replacement. An unexpected failure may incur additional Logistics
Delay Time (LDT) and Administrative Delay Time (ADT), especially if the
failures occured whilst the ship is at sea.

* The system exhibits an incremsing failure rate distribution i.e. h(t)
increases as t increases.

¢ The cost and downtime associated with simple preventive maintenance
actions and minimal repairs is negligible.

o Preventive maintenance actions and minimal repairs do not improve the
reliability of the system.

Let T be the time to failure of the system. T is u random variable with an
IFR distribution function F(t). A cycle is completed everytime a replacement
is made. It can be either a failure replacement or a preventive replacement.
(The system probabilistically starts over again and each replacement
constitutes a renewal). By using the Renewal Reward Process, Ross [Ref. 9]:
Expected long run average cost, C(t,), is given by

Expected cost incurred during a cycle

Clt,) =
Expected length of cycle

E([C]

3.1)
E[L)

18




where
C is the total maintenance cost incurred during a cycle
L is the length of a cycle

Let t, be the planned replacement age

failure preventive failure
. replacement replacement replacement
P | e Xy t, > |R,~—+ Y —,It—ly—>
{ T> ¢,
cmi (8.2)
{ ¢ T <t
where C, is the cost of preventive replacement
C; is the cost of failure replacement
C > C,
{ +t T>¢t
S ’ (3.3)
{ R+ T TS ¢t
where R, is the time of preventive replacement
R, is the time of failure replacement
\ Rr > Rp
Then,
~F(t))+C[F(t
ct) C,[1-F(t,))+C[F(t)] 3.4

IR, +t,)[1-F(t)]+RF(t)+ [ ifterdt

19




and the above equation can be simplified to the standard form as shown in

Barlow [Ref. 7] and Jardine [Ref. 10). See Appendix B for details.

C,[1-F(t)]+CJF()]

< - R{1-FU))*RF(t)+M(t) ©3)
where M(t,) is the mean life during a cycle and is given by
M) = [ *11-Folt 26)

The optimal preventive replacement age can be fonnd by finding the value
of t, that minimizes the cost function in equation (3.4) and the optimal value
of t', is that value that satisfies the following equation [Appendix B]

-RC.
h(:,) f "[1 -F(t)]dt-F(t,) -—’— + h(t,) [‘L@:__éﬁ_z] 3.7
I r !

The other measure of effectiveness that the Decision Maker is often
interested is the availability (the probability the system is up at any time t).
Assuming that there are only two states, that is the system is either up
or down, then from the Regenerative Process Ross [Ref 9], Availability,A(t), is
the Expected amount of time the system is up during a cycle divided by the

Expected time of a cycle and is given by

Mean life during a cycle

A(t) = —
Expected length of a cycle




M@)
RIT-FGIREG) M)

The optimal preventive replacement age can be found by finding the value

A¢) = (38)

of t, that maximizes the availability function in equation (3.8) and the optimal
value of t°, is that value that satisfies the following equation. [Appendix B)

My - ‘Fx%nj RIS 39

The other measure of effectiveness of interest is the mission reliability
which is defined to be the probability that the system will complete a certain

misgion of duration d when it is at age t. This is given as follows

R(t + 4)
R(t,d) - —R—(J—
1 -F(t + 4d)
- (3.10)
1 - Fr(t)

In military applications we usually like to maximize the availability of the
system subject to some budget constraint C:
max A(t,)
s.t. C(t,) € ¢C (8.11)
t, >0

Some of the continuous life distributions that are commonly used to model

the increasing failure rate of the system are:
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a. Weibull.

b. Gamma with shape parameter > 1.

¢. Log-Normal (depends on parameter).

If we do not know the probability life distribution then we have to resort
to a nonparametric approach [Ref. 10].

It should be noted that if the failure rate of the system is constant i.e. it
exhibits the Exponential distribution then by virtue of its memoryless property
we do not carry out any preventive replacement no matter what because a new
system is just as bad and good as an old one.

For our case let us assume that from historical data we know that this
system has a Weibull distﬁbut{on with shape parameter « and scale parameter
A. Then the probability distribution function F(t) is given by

«
Foei-e 00 a1 450 0 (3.12)
and the failure rate h(t) is given by
h(t)-ulata- a>1 ,A>0 20 (3.13)
and the hazard function H(t) is given by

HO = 09 a>l, 40, 120 (3.14)
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It should be noted that if the shape parameter alpha = 1.0, then the
failure rate, h(t) = A, which is a constant and this corresponds to an
Exponential distribution whose distribution function is given by

Ft) =1 -¢™ A>0,220 (3.15)

Figures 8.1 and 8.2 shows the plot of the Weibull density function and the
corresponding hazard function respectively. It can be observed that as alpha
increases the failure rate increases more rapidly.

It should be noted that for a Weibull distribution

«
~(AD)
M) = [ e * d (3.16)

has no simple clementary closed form solution, but can be expressed in terms

of the incomplete Gamma function.

A. NUMERICAL ILLUSTRATION
A case example was taken with the parameters as follow:

C, = § 25000
C, = $ 37500
R, = 8 hours
R, = 18 houra
o =30
A = 1/1390 hours
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The above example was extracted from [Ref.12]. This example was based
on the overhaul of aircraft engines. This same principle can be applied to the
overhaul of motors, compressors pumps and weapon systems onboard ships.

An IMSL subroutine DQDAG was available on the IBM3033P main frame
computer at the Naval Postgraduate School, [Ref. 18], which could integrate
the function very accurately and expeditiously by using a globally adaptive
- scheme based on Gauss-Kronrod rules. The estimate of the absolute value of
the error using this scheme was 10", A brief description of this subroutine is
shown in Appendix C.

The cost function and the availability function as in equations (3.5) and
(8.8) respectively were plotted against time. Figures 3.3 and 3.4 shows these
plots respectively. It is observed that the cost is minimum at about t,’ = 1453
hours and at a rate of about $28.95 per hour. At this critical value of t, (1458
hours) the availability is about 0.8888. It is also observed that the availability
is maximum at t,’ = 1126 hours giving an availability of 0.9888 . For this
maximum value of availability we need a budget of at least $29.92 per hour.
Based on this information it is up to the Decision Maker to choose the optimal
time t,' to carry out preventive replacement or overhaul.

From the graphs in Figures 8.3 and 3.4 it is observed that the plots are
fairly flat and this gives some flexibility to the Decision Maker. The

replacement age need not occur exactly at the optimal age.
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The optimal values of t, for the minimum cost and the maximum
availability as mentioned above also satifies the equations (3.7) and (3.9)
respectively. The values are 1453.46 and 1126.38 hours respectively.

The Decision Maker may also be interested in the mission reliability of
the system / equipment. The graph in Figure 3.5 shows the probability that the
system / equipment will sustain 24 hours of continuous operation successfully
when the equipment is at a certain age, say t hours. Suppose the Decision
Maker wants a reliability of not less than 0.95; then the optimum replacement
age t,’ is 1371 hours,
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Figure 8.5 Plot of the Reliability Function, R(t).

From the plot in Figure 3.5 it is observed that the reliability decreases as
the equipment ages, This shows that even if the equipment does not fail and
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if it has to sustain an ovuoration for a specified duration of time, an older
equipment will be less reliable and thus may not fuliili an operational mission
successfully.

Table 3.1 shows the values of the cost rate, availability and the reliability
for the replacement age around tho optimal values. It is observed that the
availability value is very close whether the replacement age is at 800 hours or
at 1600 hours. This is mainly attributable to the small values of the downtimes
for the preventive replacement, R,, and failure replacement, Ry,

The three measures of effectiveness as discussed above are important
criteria to determine the amount of spares required to be carried onboard or
prepositioned at forward operating areas. When a ship is assigned to an
operational area, say for 2 months, away from the homeport, the ship will have
to rely on the forward base for replenishment. The replenishment cycle occurs
every two or three weeks and usually takes about two days. So if the optimal
replacement age is close (not necessarily within) to these stand-off periods we
can undertake the replacement actions during these periods, It should be noted
that if we do not carry the replacement action when it is due then if we
continue to delay these actions everytime they are due, on the long run we are
going to experience high costs, poor availability and low reliability.

Since we have three measures of effectiveness and the respective optimal

replacement ages, it is up to the Decision Maker to decide which one he is

going to give top priority.




TABLE 3.1 VALUES OF COST/HR, AVAILABILITY AND
RELIABILITY FOR VALUES OF REPLACEMENT AGE CLOSE TO

THE OPTIMUM.
Replacement Cost Availability Rellability
Age (t,)") (8/hr) (A) (R)
900.0 82.78 0.9884 0.9779
' 950.0 81.90 0.9886 0.8785
. 1000.0 81.18 0.9887 0.9728
1050.0 80.59 0.9888 0.8702
11000 80.12 0.9888 0.9674
1150.0 20.75 0.9888 0.9644
1200.0 20.47 0.9888 0.9614
1250.0 29.26 0.9887 0.9582
1300.0 29,12 0.9886 0.8549
1850.0 28.02 0.9886 0.9515
1400.0 28.97 0.9885 0.9480
1450.0 28.95 0.9884 0.9443
\ 1500.0 28.96 0.9888 0.9408
. 1550.0 28.99 0.9882 0.9367
1600.0 28.04 0.9881 0.9327
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B. SENSITIVITY ANALYSIS

‘Since we do not actually know the failure parameters, it is also important
to do sensitivity analysis and see how the various measures of effectiveness
vary with changes in those parameters. This will enable us to determine the
parameters that we noed to estimate very accurately.

We have assumed that the failure distribution is Weibull. Therefore, the
parameters of interest are the shape parameter & and the scale parameter A.
Besides these, other parameters are the expected costs and the downtime of
preventive and failure replacement. In order to see the changes in the
measures of‘ eﬁ‘ecﬁveness we hold all the other variables constant and only
vary the parameter of interest. It would be possible to use Experimental
Design techniques such as the Factorial Designs to study the main effects on
the respective measures of effectiveness. This may help us to identify the

parameters that are more sensitive and shall be estimated accurately.

1. Alpha
Table 3.2 shows the optimal value of t," for the minimum cost rate,
the maximum availability and the reliability of 0.95 for sustaining a mission
of duration 24 hours at age t; and the respective optimal measure of
effectiveness for various values of the shape parameter alpha. The graphical
plots are shown in Figures 3.8, 3.7 and 3.8 for the cost rate, availability and
the reliability functions respectively. It is observed that as the value of o is
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TABLE 3.2 OPTIMAL REPLACEMENT AGE FOR VARIOUS
VALUES OF ALPHA

ALPHA

t,’ $/hr t,’ A t,’ R

I[ 25 | 1891.8 | 2962 | 12282 | 0.9882 | 15474 | 085

, || 28 | 15260 | 2023 | 1156.6 | 09886 | 14245 | 0.5

|| 80 | 1453.5 28.96 11264 | 0.9888 | 1371.1 0.96

|| 32 | 1800.8 | 2867 | 11049 | 0.98%0 | 13818 | 0.5

3.5 13840.7 28.24 10834 | 0.9808 | 1289.7 0.95

increased the replacement age gets shorter in order to minimize the costs and
maximize the availability. This is also obvious from Figure 3.2 where the
hazard increases as alpha increases and as such the failure rate also increases,
which in turns requires replacement action early so as to optimize the
respective measures of effectiveness. From Figure 3.7 it is observed that the
curves are much flatter for low values of o and for o = 3.5 the curve falls quite
rapidly on both sides of the optimal value, Figure 3.8 shows that if we want a
minimum reliability of 0.974 then the optimal replacement age is
approximately 980 hours and at this value of reliability it is insensitive to the
shape parameter alpha.
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From Table 3.2, it is observed that if the true value of the shape
parameter o was 3.2 and in the analysis we estimated it to be 3.0, then we
would have lost an availability of 0.0002 and would have incurred additional
cost of $0.28 per hour. On the other, if we have estimated it to be 3.5 then we
would have gained an availability of 0.0003 at a lower cost by $0.43 per hour.
Therefore it is much hetter to estimate the shape parameter higher than lower

and hence carry out the replacement or overhaul action earlier than later.

2. Lambda
Table 3.3 shows the optimal value of t,' and the respective optimal
values for the cost, availability and 0.95 reliability to sustain a mission of 24
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hours duration. The graphical plots are shown in Figures 3.9, 3.10 and 3.11 for

the cost rate, availability and the reliability functions respectively.

TABLE 8.8 OPTIMAL REPLACEMENT AGE FOR VARIOUS VALUES
OF LAMBDA (NOTE: MU = 1/LAMBDA)

From the above table it is observed that the optimal replacement age
for achieving a reliability of 0.95 when subjected to a mission of duration of 24
hours increases as p increases. This is because the higher the value of p, the
reliability becomes better. Also when the value of n increases the optimal
replacement age becomes longer for both the cost rate and the availability. The
higher the value of i the failure rate for the Weibull distribution decreases and
therfore the optimal replacement age becomes longer. A small difference in the

value of p do not affect the replacement age drastically. However this is not
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true for the case of alpha. Therefore, the shape parameter & need to be

estimated more accurately than the scale parameter A.

3. Costs
The costs for the failure replacement and the preventive replacement
only affects the cost rate function. These costs estimates are quite easily
available and they are usually fairly accurate based on previous data. Since we
have not discounted costs and cash flow problems in the future it is necessary
to observe the effects of the costs on the cost rate function. It is assumed that

the increase in costs are proportional such that the ratio of replacement costs,

C/C,, is the same. It is observed that the replacement age does not vary as




long as the ratio of the replacement costs, C/C,, remains the same. Equation
(3.7) clearly shows that if the ratio of C/C,, is the same, there is no effect on
the optimal replacement age t,’. However the cost per unit time increases

proportionally as the replacement costs increases.

4. Downtime

The availability function greatly depends on the expected downtime

of the failure replacement (R,) and preventive replacement (R,) assuming the
parameters for the Weibull distribution are estimated accurately. In our
- example we have taken R, = 16 ho:n's and the R, = 8 hours. Because these
figures are small compared to the c;;:ﬁmal replacement age the availability is
very high. In reality a failure at sea may take days to repair taking all the
logistics and administrative requirements into considerations, especially when
the ship is not accompanied by any auxilliary vessel or support ship. That is
the reason all vital equipments onboard have redundancies incorporated. We
can carry spares onboard but may not have other support elements to rectify
the defect. Usually the downtime for a preventive replacement is constant
because it is done at the base with all the support elements and the work is
repetitive following standard procedures. Therefore, in our analysis we shall
only vary R, to see its effect on the availability. Table 3.4 shows the values of
the availability if we carry out the preventive replacement at 1126 hours. It
is observed that the availability of the system drops as R, increases, but is still

quite high.
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TABLE 3.4 AVAILABILITY FOR VARIOUS VALUES OF
Ry AT T = 1136.

Availability
A

0.986

0.976

0.9656

0.856

C. EFFECTS OF SIMPLE PREVENTIVE MAINTENANCE

In the above policy it was assumed that simple preventive maintenance
actions did not improve the operational reliability of the system. In real life it
is evident that these preventive maintenance actions may definitely enhance
the system condition and, hence the reliability, but it will not restore the
system to the original state i.e. to be as good as new. This was also emphasised
in [Ref. 14]. However in reality there are situations for which preventive
maintenance actions can degrade the system, that is by imperfect repair. Here
we will concentrate on those actions that will improve the condition by a
certain factor. So now we shall incorporate these preventive maintenarce
actione into our model. The questions to be asked is that when should we do

these type of maintenance? How do we determine the improvement factor?

38




We can schedule the simple preventive maintenance actions whenever the
operational reliability hits a minimum acceptable limit R, say 0.75 and then
as nientioned above our reliability will improve by a certain factor, thus
making the system 'younger’ but not necessarily new, Or we could also carry
out a planned rej)lacement when the operational reliability hits the R, value
and bring the condition of the system back to new. The appropriate
maintenance action to be taken at these critical times depends on the measure
of effectiveness required.

[Ref. 16] solved this problem by minimizing the expected cost rate as the
meauﬁre of effectiveness. The number of simple preventive maintenance
actions before a planned replacement action which gives a minimum cost rate
is then obtained by evaluating the cost rate whenever the system reaches R, ;..
Here we shall carry out the appropriate maintenance actions so as to maximize
the availability of the system.

Notation is as follows:

1P simple preventive maintenance
2P planned preventive replacement
2C failure replacement

T time to failure

probability of no failure during (t, ,,t,)
probability of a failure during (t,.,,t,)
probability distribution function of the time to failure
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ft) probability density function of the time to failure

h(t) failure rate function of the time to failure

Ry time required for each maintenance action i=1,2 ;juP,C

C, cost of each maintenance action i=1,2 ;j=P,C

R minimum acceptable operational reliability limit

4 iy, time the system reaches R,

Let I be the improvement factor, then if maintenance type 1P is carried
out at time t, then the system age is reduced from t,, to ( t,-I ) and therefore

t, m by + 8 (1-1I)

and tymt, + (L =t) (1 =1I)
in general €, + (1 - D)™ g, (8.18)
As I = 1, tho effect on the system approaches "bad as old" and
As I - 0, the effect approaches "good as new" [Ref. 15).

The value of t, can be computed as follows:

| . .‘.:‘.'.‘.i;"g'_ (3.19)

and from equation (3.19) we can compute ¢, for i = 2,3,...,n,

The value of I can be estimated from past records from the data collected
on similar equipment where performance measurements are taken before and
after the simple preventive maintenance actions. In some cases performance
measurement techniques such as condition monitoring by vibration analysis

are employed. This is largely used in rotating machinery. As mentioned earlier,
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simple preventive maintenance actions constitutes cleaning, adjustments,
replacing worn out parts, tuning and minor calibration. All these actions
nornially improve the reliability which is a function of the failure rate. So
these actions may prolong the life of the system, and enable the system to be
'younger'. From experience, it is found that as the system becomes older these
simple preventive maintenance actions becames ineffective and as such the
system may require a complete overhaul which on completion is as good as
new. For our case here we shall consider that on completion of each simple
preventive maintenance action, the system age is reduced from ¢, to t, - (t, - t,.,)
(1 - I) where t, is the time of the simple preventive maintenance action.

A cytle is completed each time a replacement takes place which could be
either due to a failure replacement or a planned replacement. On completion

of the replacement action the cycle probabilistically starts all over.

1. Casel
T > t, (Failure occurs after the type 2P maintenance)

1P
| 1

) 2p
1 I
0 £,

1
L
t, e ¢,
The costs associated are:

a) Expected costs of type 1P maintenance.

If planned replacement takes place at t,, then there will be (n - 1)

maint: -nance actions of type 1P and each costs C,p.
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Theu total cost = (n - 1) C;p

But this event will occur if there are no failures in the first (n-1)
intervals. The Probability of this event is = R,(t,)Ry(t)...R (t,). It is assumed
that the failures are statistically independent. The failure in each interval is
independent from the failure in next interval.

Therefore expected costs of type 1P maintenance =

(r - 1) Cppr fI R(t) (3.20)

is
where R(t) = 1 - Probability of a failure in the (n-1) intervals and is given by

R@) =1 -~ [F¢) - F¢t, -~ (¢ - 4. )] (3:21)
b) Expected costs of type 2P maintenance.
Since there will be only one Type 2P maintenance in an interval, the

expected costs of type 2P maintenance »

Cor '},:!R‘"‘) (3.22)

The expected downtime can be obtained by substituting the cost by
downtime in equations (3.19) and (8.20).
The downtime associated are:

a) Expected downtime of type 1P maintenance =

m-1 Ry ~‘Ijn,a‘) (3.23)

b) Expected downtime of type 2P maintenance =
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R, * H R() 3.24)

2, Case2

t.-; < T < t‘
. p__ 3 i
! J I | 1 ! | |
0 t; t; tn-:. tﬂ

The costs associated are:

a. Expected cost of type 1P maintenance

If the failure occurs between t,, and t,, then there will be (n-1)
preventive maintenance actions and the Probability of this event is
= Probability of no failures in the first (n-1) intervals multiplied by the
Probability of a failure between t,; and t,. Again we assume that failures are
independent. Then the expected cost of type 1P maintenance =

-1

,):?K‘ - 1)+ Cyp - IT R Fit)) (3.25)

J

b. Expected costs of type 2C maintenance =
[} L) i1

31Cy -}} Rt * F)) (326)

[T}

The downtime associated are:

a. Expected downtime of type 1P maintenance =
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i (-1 R, :Ii R(t) * F)) 327)

is]

b. Expected downtime of type 2C maintenance =

‘Z:;[Ru :Ii R() * F(t)] (3.28)

The expected operation time until t, is the sum of the average
operation time until t,, and the average operation time during (t,.,,t,).

The expected downtime is the sum of all the downtimes in equations
(3.23), (8.24), (3.27) and (3.28).

From our earlier discussion we know that the mean life of the

system, aasuming only 1 interval, is given by

M) = [ 11 - PO d (3.29)

and the above equation can also be written as

Me) = ['f)d + Ry . (3.30)

and for n intervals the equation can be written as

A fi-l
}:{HW U RO & - RO - r..,n} 63D

=1 {1




Total Operation Time

Now Availability =
Total Operation Time + Total Downtinme

It will be shown later that if the expected downtime for a type 1P
maintenance (simple praventive maintenance) is small then the availability
function given by the above equation is a good approximation,

' The expected costs is the sum of all the costs in equations (3.20),
(8.22), (3.25) and (8.26). Then the cost rate function, C(t,), is given by

Total Expected Costs
Total Operation Time + Total Downtime

C(t,) =

3. Numerical Nlustration
Now let us take a case example with the folldﬁng data:
Let the time to failure, T, follow a Weibull distribution with shape
parameter o and scale parameter A.
Let
o = 30
A = 1/1390
Rip= 1hour
) Rip = 8 hours
Ry = 48 hours
Using the above data and equations, a Fortran program was written
[Annex A] to determine the optimum times to carry out simple preventive

maintenance actions and complete overhauls or preventive replacement so as
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to maximize the availability. The results are tabulated in Tables 3.5, 3.6, and
8.7 for values of I = 0.1, 0.6 and 0.9 respectively.
When I = 0.1, carry out simple preventive maintenance actions at

times:

¢ 917.6 hours
» 1743.4 hours
® 2486.7 hours

and preventive replacement or complete overhaul at time 8156.6 hours to
achieve a maximum availability of 0.9836.

When I = 0.5, carry out simple preventive maintenance action at time
817.6 hours and a preventive replacement at time 1376.4 hours to achieve a
maximum availability of 0.9802,

When I = 0.9. do not carry out any simple preventive maintenance
action and at time 917.6 hours replace or carry a complete overhaul of the
system so as to achieve a maximum availability of 0.9794.

It is observed that as the improvement factor, I — 0, the system
becomes "good as new" after each simple preventive maintenance action and
as the improvement factor,I = 1, the system becomes "bad as old" after each

preventive maintenance action.
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TABLE 3.5 REPLACEMENT TIMES FOR IMPROVEMENT FACTOR,
I = 0.1 AND Ry, = 8 HOURS, Ry; » 48 HOURS, R,y = 1 HOUR, o = 3.0,
p = 1890 HOURS,

47

N TIME (HOURS) | AVAILABILITY
1 917.6 0.979421
2 1743.4 0.982197
3 2486.7 0.983306
4 3155.6 0.988591
b 3767.7 0.983586
6 4299.5 0.983480
7 47817.1 0.983344
8 5226.0 0.083206
9 5621.0 0.983076
10 5976.5 0.982955
11 6206.5 0.982848
12 6584.4 0.982751
13 6843.6 0.982664
14 7076.8 0.982587
16 7286.7 0.982518 "




TABLE 3.6 REPLACEMENT TIMES FOR IMPROVEMENT FACTOR,
I= 0.5 AND R,, = 8 HOURS, R, = 48 HOURS, R,; = 1 HOUR, o = 8.0,

[T N | TIME GIOURS) | AVAILABILITY
1 917.6 0.979421
“ 2 1878.4 0.980155
) 3 1605.8 0.980074
4 1720.5 0.979848
5 1777.8 0070644 |
6 1806.5 0.978483
" 7 1820.9 0.979358
R || 8 1828.0 0.979261
| “ 9 1831.6 0979184 |
- “ 10 1833.4 0.979122
i ' 11 1834.3 0.979071
- u 12 1834.7 0.979029
g 13 1835.0 0.978994
14 1835.1 0.978964
| 15 1835.1 0.978938
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TABLE 8.7 REPLACEMENT TIMES FOR IMPROVEMENT FACTOR,
I = 0.5 AND R,, » 8 HOURS, R, = 48 HOURS, R, = 1 HOUR, o = 3.0,

n = 1390 HOURS.
N TIME (HOURS) | AVAILABILITY
1 917.6 0.979421
2 1009.4 0.979042
3 1018.5 0.978456
4 10195 0.977955
5 1019.5 0.977540
8 1010.6 0.977198
7 1019.6 0.9%6899
8 1019.6 0.976646
0 1010.6 0.976426
10 1019.6 0.976123
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IV. POLICY II (MINIMAL REPAIR WITH AGE REPLACEMENT)

As an alternative assume that the system consists of several components
and the system fails when one of the componente fail, that is components are
connected in series. We shall assume the components have indepondent IFR
distribution. Then the system lifetime is also IFI}. (The IFR property is
maintained under the formation of the series system). Preventive replacement
is carried out when the system reaches the age t,. Between the preventive
maintenance, failures are repaired as quickly as possible (minimal repairs)
' éither by replacing the failed component with a new one or repairing the failed
part. We also assume that the eystem failure rate is not disturbed on
completion of the minimal repair i.e. the failure rate i the same as before
failure. If the failure occurs at time t < t, the failure rate of the system just
after the minimal repair is h(t). Failures are detected immediately.

This idea of minimal repair was first introduced by Barlow aad it is
described in [Ref. 7). After that, muny authors expanded on these ideas and
formulated various models associated with minimal repairs; they used the
expected cost rate as the measure of effectiveness. In this policy we will
emphasize the availability of the system as our measure of effectiveness.

However ‘we will also formulate the expacted cost rate models.

60




Let 0 < t be the system operating time since last replacement. Then the
probability of a failure occurring in [t,t+dt] is h(t)dt where h(t) is the failure
rate of the system.

Let N(t,) = number of failures occuring in time (0,t,)

When repairs are minimal, { N(t,), t, 20 } is a Nonhomogeneous Poisson

‘Process with intensity function h(t,).
The probability that the system will experience n failures in the interval

(0,t,) is given by

PUNG) =} = 3"—‘%1:’5 @D
where

m(e) = ELNep 1 = [ hiope )

m(t,) is called the mean value function.

A. COST MODEL
The age t," at which the operating system is replaced depends on the

following fuctors:

¢ Failure distribution (IFR).
* Costs of minimal repair and preventive replarement.

¢ Downtime of minimal repair and preventive replacement.
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* Measure of effectiveness:
- Minimize costs.
- Maximize availability.

We have assumed that there are no simple preventive maintenance

actions,

R, R~ R Re TRy
| t’

X~—==falilure

Let C;be the mean cost of each minimal repair.
C, be the mean cost of preventive replacement.
R, be the mean time of preventive replacement.
R, be the mean time of a minimal repair.
and t," be the planned replacement age.
C;>C, and R>R,
Then, assuming that the cost of downtime is negligible, the total coat is
given by
C= "g Cy + C, 4.3)

where C, is the cost of the i-th minimal repair and the length of the cycle is

given by

Lwt, +R (4.4)




By using equation (3.1) and assuming that the time for a minimal repair
is very small compared to that of the length of a cycle, the expecte? cost rate
function is given by

c, [Phya +C,
Ry

and we wish to minimize the cost per unit time, s0 we set the derivative of

ct,) = “.5)

equation (4.5) to 0 and we obtain
Wels, + R - [7 by d = % (4.6)
/
Then the value of t,° that satisfies the above equation is the optimal
replacement age.
For a time to failure, T, following a Weibull distribution with shape
parameter ¢ and scale parameter A the expected cost rate function is given as

below

a
A
@
LR

For given values of C;, C, , R, , R; and the parameters o and A we can

ca,) =

find the optimal values of t,' that minimize the expected cost rate.
Now let us take a case example with the data as follows, but first without

preventive maintenance action:

C, = $ 25000




C,=$ 1000

R, = 8 hours

R¢ = 1 hour

o=30

A = 1/1390 hours

Figure 4.1 is a plot of the cost rate function as in equation (4.7) and the

optimal value of t,’ that minimizes the cost rate function is 8222 hours at a
cost of 811.60/hour.
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Figure 4.1 Plot of the Cost Rate Function.

2000 asoo 4000

Table 4.1 shows the values of the cost rate for the replacement age t,
close to the optimal value. From Figure 4.1 it is observed that the curve is
fairly flat near the optimal value thus giving some flexibility to the decision

maker.,
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TABLE 4.1 VALUES OF COST/HOUR FOR VARIOUS

: REPLACEMENT AGE.
Replacement Age Cost
(hours) ($hour)
: 9000.0 ’ 11.85
- 3050.0 11,63
3100.0 11.61
. 3150.0 11.60
3200.2 11.60
3260.0 11.60
3800.0 11.60
3350.0 1161
3400.0 11.63
3450.0 11.66
3500.0 11.68

Now suppose there are s identical components which operate and fail
independently and have the same failure distributions with the same
parameters. All of these components are replaced at time t, at a cost of C, .

When each of the component fails it is replaced individually or undergoes
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minima] repair without affecting the system failure rate as a whole, Then the

expected cost rate function becomes

sC ["h & +C,
R

Now let us imagine that we carry out a simple preventive maintenance

ca,) = 48)

action at some time t, and after N of these preventive maintenance actions are
carried .out we either réplace the system or carry out a complete overhaul
which on completion is like new, Any failures between the preventive
replacement are treated as minimal failures and are repaired quickly in
negligible downtime at a cost of C, The cost of each simple preventive
maintenance action is C,,. It is assumed that after each simple preventive
maintenance action the system improves by a certain factor, so for simplicity
we say that the system becomes 'younger’. Nakagawa [Ref. 16). This means
that if t is the time of a preventive maintenance action the failure rate on
completion is h(t-x) where x is the amount of time by which the system has
become 'youniger'. However the failure rate after a minimal repair stays the
same, The value of x can perhaps be determined from past historical records
using performance measurements techniques such as condition monitoring by
vibration analysis or some output parameter. However a methodology for
characterizing the effective age reduction, x, remains to be developed.
According to the above assumption the replacement age is Nt,, and

there are N-1 simple preventive maintenance actions.
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A cycle is completed at (Nt, + It,) and the process probakilistically

starts all over.
e £ B £ e
0 €, t, ty. Nt
£ | - niinimal failure
R, woun expected time of preventive replacement

t,i= 1,2, ,N-1 oo simple preventive maintenance
Nt, ----  preventive replacement
( Note: At t, the age of the system is (t, - x) )
The total expected costs, E[C], incurred in a cycle is given by

EIC] = C, Ayt + Cp+ C, [ :'_:“""h(:)d: +Cy + . + C, (49)

forOsxst,

and this equation can be simplified to

N-1
aa=c Y [y « N-1C, +C

3 o » @0

forOsxst,
and then the expected cost rate function, C(t,), is given by

E[C]
E[L]

c(t,) =

where E[L] = Nt, + R,.
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For a time to failure, T, following a Weibull distribution with shape

parameter o and scale parameter A he expected cost rate function is given as

follows
N-1
ty+(t, -2 -
¢y [ aruttd + (N-1)C, +C,
cey = —=2—2 @.11)
M, + R,

When C,, = 0 and x = 0, that is there is no preventive maintenance
action, then the above equation is the same as equation (4.7).

Now we shall plan to carry out a preventive maintenance at some
time t, at a cost of C,, = § 500.00. On completion of this simple preventive
maintenance action, the age of the system becomes younger by some value x.
When x = 0, it is observed that there is no improvement to the optimal planned
replacement age but we have incurred an additional cost at $11.75/hour
instead of the original cost at $11.60/hour. As x increases from 0, the optimal
planned replacement age increases and also the cost rate reducos. This is for
the case of carrying out only one preventive maintenance in between the
planned replacement or overhaul age. We could carry on the same analysis
incorporating more preventive maintenance actions and the results will give
more improvement. However this greatly depends on the parameters such as

the value of x and the cost of preventive maintenance assuming the other

parameters remain fixed.




In the real scenario as the system gets older there is more
deterioration and on completion of each preventive maintenance action the
value of x probably reduces over time; that is; it is some function of t, and
there comes a stage at which preventive maintenance action will not improve
the system any longer. For simplicity, however we assume that x is constant.
It should be noted that there will be values of age for which (age - x) <0, we
therefore take the maximum (0, (age - x)) as the age of the system on
completion of a simple preventive maintenance action.

The Figure 4.2 and Table 4.2 illustrate that simple preventiva
maintenance actions increases the optimal replacement age.

Teable 4.2 shows the time for a preventive replacement (TPR) and the

time for a simple preventive maintenance (TPM) for various values of x.

B. AVAILABILITY MODEL
Now let us take the availability as our measure of effectiveness. From
earlior discussion Availability is given by

Mean Life During A Cycle

A(t)) =
Total length of cycle

r,-RIj;" h(s) ds
WK,

and we wish to maximize the availability function, sc we set the derivative of

A ~ @12)

equation (4.12) to 0 and we obtain
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“Figure 4.2 Plot of the Cost Function with Preventive Replacement
for Various Values of x. C,; = $500.00.

TABLE 4.2 OPTIMAL PREVENTIVE REPLACEMENT AGE WITH
PREVENTIVE MAINTENANCE FOR VARIOUS VALUES OF X,

Cyp = $500.00.
x TPR TPM Cost
(hours) (hours = 1) (hours = 0.5) (8/hour)

0 3244 1622 11.75

100 3281 1641 11.48

“ 200 3320 1660 11.22
| 500 3443 1722 10.48
800 3573 1787 9.83

1000 3667 1834 9.43




hey (5, + R - [ b dt = % 4.13)

Then the value of t," that satisfies the above equation is the optimal
replacement age.
For a time to failure, T, following a Weibull distribution with shape

parameter o and scale parameter A the availability function is given as follows

t, - R(At (4.14)
A(") = T&L

The availability function in equation (4.12) is an approximation because
we do not take into account of the downtime during a minimal repair, which
in reality is not entirely valid. In the equation we assume that the system can
still fail when the system is down (we are integrating over (0,t,) and some of
that is downtime). However, this approximation is quite amccurate if the
downtimes are small, as is likely to be true in practice.

We can find an exact solution to equation (4.12) as follows:

Let

A(t) =  Probability the system is available at time t (age t)

following the last replacement.

h(t) = failure rate at time t.




u(t) = ropair cate at time t. For our case this is assumed to be
constant and denoted by u. Then p = R/,
(It should be noted that it may take longer to repair an older system)
Then,
A(t+dt) = A{E){1 - h(t)dt} + {1 - A(t)}u(t)dt + o(dt) (4.18)
where o(dt) represents higher order terms which are =0
From equation (4.15), arranging the terms we get

A(t+dt) - A(t)

= =h(t) A(t) + Hi{t) {1 - Alt)) (4.16)

dt
dA(t)
d = =h(t) A(t) - p(t) A(t) + u(t) (4.17)
t
dA(t)
—— + {h(t) + ju(t)} A(t) = u(t) (4.:8)
dt
% 4D e ﬂ {Atep + ll(tl))‘,} _—y f" M) + pis)) @ (4.19)
. A(tx[; Mty + u(t.))t,_A(O) . fotu('z).[: (M) + pity) dy &, (4.20)

{hig)) + pGy)iey

AD) = AQ)e * Tyt + wid, di, (4.21)

]
+ j; p.(tz)g
For a time to failure, T, following a Weibull Distribution with shape parameter

o and scale parameter A, the failure rate h(t) is given by

h() = ar®es! a>1,A>0,220 4.22)
then subtituting A(0) = 1 and , u(t) = (Ry)? ; A(t) can be simplified as follows:




“fag® + £

-l00* - (gy* +L
AD) = ¢ b . u

4
1 e R :

-E, ]0 e dt, 4.23)
R P R RRCRR <)
. [)e SR
But the integral 0 has no closed form
solution. Therefore we have to evaluate it numerically.

Using the same principle as that in [Ref. 17] the aversage availability over

a cycle of length t, + R, and hence in the long run is given by

= _l—— b
46 = =g [? 40 & (424)

By taking ihe derivative of equation (4.19), we ¢btain

dAa) G v R) Ay - [7 AQ) di
d, (" + R)Z

4.25)

Setting
dA(t,)

= 0, fort, >O0thent, isacandidate for

d(t,) a time between the end of one preventive
replacement and the beginning of the next
and t’ is the value that satisfies the following equation
. 1 5
A = —— 7 A 426)
5"+ RO

To solve equation (4.24) the IMSL subroutine DQDAG was used to
compute the integral in equation (4.23) for various valuoes of t. So we obtained

A(t) for various values of t and the graph of this function is shown in Figure
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4.3. Then we used the IMS]. subroutine DCSINT [Ref. 13] to compute the cubic
spline interpolant to the set of data points obtained earlier (values of t and the
corresponding values of A(t) ). Finally we used the IMSL subroutine DCSITG
[Ref. 13 to evaluate the integral of the cubic spline for various values of t,. A
brief description of the IMSL subroutines DCSINT and DCSITG are in
Appendix D and E respectively. The values obtained by using this 'exact’
method was compared with those values obtained using the approximation as

in equation (4.12). These values are tabulated below. It is observed that the
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Figure 4.3 Plot of the Availability Function for Values of o= 3.0,
} = 1890, R, = 8 hours, R, = 8 hours.




both the approximate end exact solutions are the same to four decimal places
and the approximation gives an accurate solution. This is true for small values
of R, and as R, is increased from 1.0 hour to 8 hours, both the approximation
and the exact solutions are the same to two decimal places, as shown in Table
4.4, However the optimal replacement age are the same for both the cases. As
R, increases the accuracy of the approximation diminishes.

Table 4.3 shows the values of availability for o = 3.0, n = 1390, R; = 17
hours, R, = 8 hours. The optimal replacement age for the two methods and the

maximum availability are:

* approximate solution 2203 hours 0.994581
¢ exact solution 2208 hours 0.994589

It is observed that the approximation gives very accurate results.
Table 4.4 shows the values of availability for o = 3.0, n = 1390, R, u 8
hours, R, = 8 hours. The optimal replacement age for the two methods and the

maximum availability are:

¢ approximate solution 1099 hours 0.989201
¢ exact sclution 1108 hours 0.989301

It is again observed that the approximation gives very accurate results.




Table 4.6 shows the values of availability for o = 2.5, p = 1390, R, =1
hour, R, = 8 hours. The optimal replacement age for the two methods and the

maximum availability are:

¢ approximate solution 2711 hours 0.995104
* exact solution 2717 hours 0.995112

Once again it is observed that the approximation gives very accurate
results. If the actual shape parameter was 2.5 and if we have estimated it to
be 3.0, then we would have lost an availability of 0.000628 which can be
considered negligible.

Table 4.6 shows the values of availability for . = 3.5, p = 1390, R, = 1
hour, R, = 8 hours. The optimal replacement age for the two metheds and the

maximum availability are:

* gpproximate sulution 1935 hours 0.994243
¢ exact solution 1940 hours 0.994253

Once again it is observed that the approximation gives very accurate
results. If the actual shape parameter was 2.5 and if we have estimated it to
be 3.5, then we would have lost an availability of 0.000859 which again can be
considered negligible. This shows that the shape parameter does not effect the

availability drastically and a close estimate is sufficient.
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Table 4.7 shows the values of availability for « = 3.0, p = 1350, R; =1
hour, R, = 8 hours. The optimal replacement age for the two methods and the

maximum availability are:

¢ approximate solution 2140 hours 0.994421
* exact solution 2145 hours  0.984430

It is observed that the approximation gives very accurate results. If the
actual scale parameter was 1390 and if we have estimated it to be 1350, then
we would have lost an availability of 0.000169 which again can be considered
negligible.

Table 4.8 shows the values of availability for o = 3.0, p = 1450, R;= 1
hour, R, = 8 hours. The optimal replacement age for the two methods and the

maximum availability are:

¢ approximate solution 2298 hours 0.994805
* exact solution 2302 hours 0.994812

It is observed that the approximation gives very accurate results. If the
actual scale parameter was 1450 and if we have estimated it to be 1350, then
we would have lost an availability of 0.000382 which again can be considered
negligible. This shows that the scale parameter does not effect the availability

drastically and a close estimate is sufficient.
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TABLE 4.3 COMPARISON OF AVAILABILITY FOR VALUES OF
o = 8.0, p = 1390, R, = 1 HOUR, R, = 8 HOURS.,

Replacement Approximate Exact
Age (hours) Availability Availability

1200.0 0.992845 0.892847
1300.0 0.993258 0.993261
1400.0 0.993593 0.993595
» 1500.0 0.993862 0.993865 |
1600.0 0.994076 0.994080
1700.0 0.994245 0.994249
1800.0 0.994374 0.994379
1800.0 0.994460 0.884474
2000.0 0.994532 0.894539
2100.0 0.994560 0.994576
2200.0 0.994581 0.994589
2300.0 0.994571 0.994580
[ 24000 0.994540 0.994551
2500.0 0.984480 0.994503
2600.0 0.984423 0.994437




TABLE 4.4 COMPARISON OF AVAILABILITY FOR VALUES OF
Gisao,]lllsso,R'IBHOUIRS,RPIBHOURS-

Replacement Approximate Exact
Age (hours) Avallability Avallability
- s—
800.0 0.988211 0.988273
800.0 0.988798 0.988870
1000.0 0.989108 0.989193
1100.0 0.989201 0.988300
1200.0 0.989116 0.989232
1300.0 0.988880 0.989014
1400.0 0.988613 0.988669
1500.0 0.888028 0.988210
1600.0 0.987437 0.987648
1700.0 0.886748 0.986993
1800.0 0.986967 0.986252
2000.0 0.984148 0.984530
2200.0 0.982012 0.982519
2400.0 0.979577 0.980244
2600.0 0.976867 0.977724
———————————— s ——— s




TABLE 4.5 COMPARISON OF AVAILABILITY FOR VALUES OF

o = 2.5, p = 1890, Ry = 1 HOUR, R, » 8 HOURS.

Approximate

Exact

Replacement
Age (hours) | Availability Availability
20000 0.994779 0.994788
21000 0.994874 0.994878
“ 2200.0 0.994949 0.994954
2300.0 0.885008 0.995013
2400.0 0.995051 0.995067
2500.0 0.995080 0.995087
|| 2600.0 0.995098 0.995105
| 2700.0 0.995104 0.995112
2800.0 0.895100 0.995108
2800.0 0.995087 0.995096
3000.0 0.995085 0.995075
3100.0 0.995036 0.995047
3200.0 0.885000 0.985017,
H 3300.0 0.994956 0.994969
34000 0.994907 0.994921
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TABLE 4.6 COMPARISON OF AVAILABILITY FOR VALUES OF
Glso5,ll- 13%,&- IHOUERPIBHOURS.

Age (hours) Availability | Availability
| 12000 | 0.992883 0.992885
|| 1800.0 0.893279 0.993281
1400.0 0.993580 0.993593
1500.0 0.993829 0.993833
1600.0 .~ 0.994007 0.994012
1700.0 0.994132 0.994137
1800.0 0.994208 0.994215
1800.0 0.894242 0.994250
2000.0 0.994236 0.994246
2100.0 0.994184 0.994208
2200.0 0.994118 0.994132
2300.0 0.994009 0.994026
2400.0 0.893868 0.983889
2500.0 0.893699 0.993723
2600.0 0.893501 0.993529




TABLE 4.7 COMPARISON OF AVAILABILITY FOR VALUES OF

o = 3.0, p = 1350, Ry = 1 HOUR, R; = 8§ HOURS.

Exact

Replacement | Approximate

Age (hours) Availability Availability
1800.0 0.993201 0.993204
1400.0 0.993526 0.893529 ||
1500.0 0.993785 0.893789 ||
1600.0 0.993890 0.993993 ||
1700.0 0.994147 0.994152
1800.0 0.994264 0.994269

| 18000 0.994346 0.994352

2000.0 0.994397 0.994404 ||
2100.0 0.994419 0.994428
2200.0 0.994417 0.994426
2300.0 0.994381 0.994402
2400.0 0.994344 0.994357
2500.0 0.994278 0.994293
2600.0 0.994193 0.994210 ||
2700.0 0.994082 0.994110
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TABLE 4.8 COMPARISON OF AVAILABILITY FOR VALUES OF
o = 3,0, p = 1450, Ry = 1 HOUR, R, = 8 HOURS,

Replacement Approximate Exact

Age (hours) Avallability Availability
1600.0 0993961 0.993963
1600.0 0.994189 0.994192
1700.0 0.994878 0.994376
1800.0 0.994517 0.994521
1800.0 0.994628 0.894632 ||
2000.0 0.994709 0.984714
2100.0 0.994764 0.994770 “
2200.0 0.994795 0.994802
2300.0 0.994805 0.994812
2400.0 0.994795 0.994803
2500.0 0.994767 0.994777
2600.0 0.984722 0.994733
2700.0 0.984662 0.994674
2800.0 0.994687 0.994601
2800.0 0.994498 0.994514
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V. POLICY III (MINIMAL REPAIR / FAILURE REPLACEMENT /
PREVENTIVE REPLACEMENT)

POLICY II assumes that each time a failure occurs it can be repaired and
the system is restored to an operational state without changing the failure rate
of the system as a whole. Now we shall be more realistic and consider the
possibility of a major failure before the planned age replacement time t,', and
that failure is rectified by a replacement. (Here again a replacement may be
an overhaul which is aasumed to return the system to a state as good as new).
So when the system is running, two types of failures are possible:

* Type I failure, denoted by 1C. This failure is corrected by minimal repair;
if the Type I failure occurs at age t, the failure rate just after correction
is h(t). This type of failure is usually repaired at sea by the ship's staff
using the support elements onboard.

* Type Il failure denoted by 2C. This failure is remedied by effective system
replacement; the Type II failure is followed by overhaul, after which the
failure rate is h(0), This type of failure is beyond the ship's staff
capability either due to lack of expertise or unavailability of the required
suppnrt elements, and the ship has to return to base to effect repair
either by major overhaul or replacement.

The failures are detected immediately.

It is assumed that the costs and downtime for simple preventive

maintenance actions are negligible.
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First let us assume the time to some type of failure, T, has an IFR
distribution F(t) with a failure rate denoted by h(t); 0 < t is the system
operating time since last overhaul. Let Y be the time of a type 2C failure
having the distribution function G(t).

Let p, be the probability of Type 1C failure

and p, be the probability of Type 2C failure

(p, and p,; could dependent on time) ; p, + p; = 1.0

Now let N(t) denote the number of Type 1C failures that occurs in time
t, where 1, is measured from a moment of replacement or overhaul. By the
assumption, the expected number of Type 1C failures in time t, m(t) = E[N(t)],
satisfies a simple differential equation obtained as follows:
m(t+dt) = m(t){1 - p;h(t)dt) + {m(t)+1l}p,h(t)dt + o(dt) (8.1)
where o(dt) represents higher order terms which are = 0

rearranging the terms we get

dm(t)
= p:h(t)
dt (5.2)

and therefore

m® = by [[ e (5.3)
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provided minimal repair correction times are assumed to be negligible enough
so that the expected downtime from that source is close to R,.-m(t), where R,¢
is the mean time of a minimal repair.

Let T be the time to a failure (either Type 1C or 2C) with the failure rate
h(t)

Then the failure rate of Type I failure = p,h(t) at age t

and the failure rate of Type II failure = p,h(t) at age t.

Since
[ -Fp)=eh®* (54
and
(1-G)] =ahn**
“ e k04
-G~ -FoP* 5.5)

From equation (5.5), it can be seen that if p, = 1, then the diatribution of
any type of failure is the same as the distribution of a Type 2C failure and this
implies that each failure is a major failure and it requires a replacement /
overhaul action and this is the case as in Policy I (Age Replacement) as
mentioned in Chapter III.

For p, = 0, this impli- ; that the probability of a major failure, i.e Type 2C

is 0 and each failure i# a minimal failure and the fai'ure is removed by




it

minimal repair and this is the case as in Policy II (Minimal Repair and
Preventive Replacement) as mentioned in Chapter IV.

For the case when 0 < p, < 1, then a failure could be either

* Type 1C
* Type 2C

This is Policy III, which is the general case and will be discussed in this
chapter.

This idea of two types of failure has been studied by Beichelt and Fisher
[Ref. 18). They derived the Reliability functions for calculating the expected
long run cost rate for a generalised age-replacement policy. They assumed that
maintenance actions take only negligible times which in reality is not true,
especially when a major failure occurs at sea. Besides that, in the military
envirenment we are often interested in the availability of the system as our
measure of effectiveness 80 in this policy we will expand the cost rate model,
but also, and more importantly, formulate a model to maximize the availability

of the system subjected to two types of failures.

A. COST MODEL
The age t,' at which the operating system is replaced or overhauled

depends on the following factors:

77




e Failure distribution (IFR).
* Costs of minimal repair, preventive replacement and failure replacement.
¢ Downtime of preventve replacement and failure replacement.
* Measure of effectiveness:
- Minimize costs.
- Maximize availability.
It is assumed that the downtime of a minimal repair is negligible.
Let C,; be the cost of a minimal repair. ‘
Cac be the cost of a failure replacement.
Cyp be the cost of a preventive replacement,.
R,c be the mean time of a minimal repair (Type 1C failure).
Ry be the mean time of a failure replacement (Type 2C failure),
R;p be the mean time of a preventive replacement. t,. be the planned
replacement age.
N(t,) be the number of minimal repairs in interval (0,t,).
y be the observed time from system replacement until the next
Type 2C failure.
N(y) be the number of minimal repairs in the period (0,y), where y is
the time until Type 2C failure.

Rie > Ry > Ry ARd Cye > Cpp > Cye
A replacement takes place either at time t, or when there is a Type 2C

failure.
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1. Casel
Y >t

x X X XX T

o
g

x----minimal repair

2. Case?2
Y<t,
—x x x x -{__-R“““
0 4

x-—--minimal repair

A cycle is completed each time a replacemeont takes place and the
costs C incurred in a cycle is given by the total costs of minimal repairs and
the cost of either a preventive replacement or a failure replacement. This is

given by the following:

c %czcln(t,) | ¥> ¢, 1 +Cy v.p. 1 - G(y)

{Cc [N(y) | YsSt ] +Cy w.p. G(y) (5.6)

In order to find the total costs of minimal repairs, we ought to know

the expected number of minimal repairs and this is given below for both the

two cases:




Forcase 1, Y > t,

ELNG) | Y>8) = [7p W) & (5.7

Forcase 2, Yst,
Let N(y) = n, then

EINO) | Y<5¢,]= Y » PING)=n | Yst,)
=0 (5.8)
. = n PINO)*n, Y st]
E.o PY s t]
thus
t, [
EINO) | ¥ s 3, 1-5(-;3 [ P, hs) ds ] g0) &t (8.9)
Then
EIC) = [(Cyc EING) | ¥ > 1,1) + Cp N1-G(8)) + (5.10)

[(Cic EING) | ¥ < ¢ LD+ Gy 1[G0)]
The length of the cycle, L, depends on the time of a Type 2C failure

and is given by:

{ + Y >
L w{ Rt & (5.11)
{ Ry + ¥ ¥ < t,

Then the expected length of the cycle, E[L), is
ETL] = R,ll -G(t)] + R, AG(t)) + M(t) (5.12)

where M(t,) is the mean age of the system at replacement / overhaul and is

given by
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My = [Pee@®dt + 4l - G¢)] (5.13)

which can be simplified to

M) = [P 11 - GO ] (5.14)
From equation (3.1),
] x(cC]
&) E[L]

Then the optimal value of t," is the value that minimizes the cost rate
function C(t,) and this can be found by graphical or numerical analysis. [Ref.
16] highlights that an finite optimal interval t,’ exists if h(t) is monotone
increasing function and C > 0 where C is given by

Cic
(Coc = Cpp = Cyc)

3. Weibull Example

C=

For a time to failure, T, following a Weibull distribution with shape
parameter o and scale parameter A the expected total cost in a cycle, E[C], is

given as follows:
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E[C] = o P’ {Cyo Py (AL)* + Cyp - Cye} + Cy¢

S (5.15)
CicpP, P, & A f:’ (-1 g g
f‘; LR ¢-h(m‘ dt
The integral 0 has no closed form

solution and the IMSL subroutine DQDAG was used to solve it numerically.
The length of the cycle is given by

EILL = Ryple ™) 4 Ryl - %) 4 [ o%09' ¢ (5.10)

4. Numerical llustration
Now let us consider an example with these data: assuming that the
downtime for a minimal repair is negligible:
C,p = $ 25,000
Cyc = § 87,600
Cic = § 1,000
R,;; = 8 hours
Ry = 16 hours
R, = 1 hour
a =30
A = 1/1390 hours
p, =06
p, =04
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Figure 5.1 shows the plot of the expected cost rate function. It is
observed that the curve is féirly flat near the optimal point thus giving
flexibility to the decision maker. The optimal replacement age is t, = 1888.64
hours at a cost of $22.03 per hour.

In a real situation p, is a function of age and it usually increases
with age i.e. as the system ages the probability of a major failure approaches
1.0. For our case we have taken the probability to be constant and this again

is to simplify our computation,

-r ¥ T Y Y T T T L§ T

22.8 \ orct]

\_1

i " A " A i A P

1400 1800 2200 2800 3oon
Time Chrd

Figure 8.1 Plot of the Cost Rate Function.

21.8
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TABLE 5.1 VALUES OF COST/HOUR FOR VARIOUS

REPLACEMENT AGE.
Replacement age Cost
t,’ (hours) (8 / hour)
1000.0 27.67
1100.0 26.01 F
1200.0 24.76
1300.0 23.83
1400.0 28,15
1500.0 22.67
1600.0 22,36
1700.0 22,16
1800.0 22,06
1800.0 22.03
| 20000 22,06
| 21000 22.13
2200,0 22,22
2300.0 22,32 '
2400.0 22.42 ‘
| 2600.0 22.52
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B. AVAILABILITY MODEL

Now let us take the (Point) Availability as our measure of effectiveness.
When the ship is at sea there are usually two types of failures; failures which
can bé rectified onboard, each of which individually does not effect the
availability of the system drastically, and other failures which are not
repairable onboard so the ship has to return to port to effect repairs; this
causes the availability to be more severely degraded. First we shall assume
that the downtime for a minimal repair is negligible. Then using the equation

(3.8), the availability function is given by

M)
Ai) = 5.1
@ " R T - GG~ Ry, 166 + M) .17
where M(t,) is the mean operational time in a cycle and it is given by

M@ = [711-60) & (5.18)

and this is similar to the availability function in Policy I in Chapter III.
Again the availability function in equation (5.17) is an approximation

because we do not take into account the downtime during a minimal repair,

which in reality is not faithful to reality, but should be reasonably accurate.
If we do take the downtime of the mirimal repair into account we can

obtain an exact solution as follows:
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Using
Let

ay(t) =
ay(t) =
a;(t) +

Z(t) =
h(t) =

nlt) =

Now,

the same principle as in equation (4,15),

Time of a Major Failure
{1 if the system is up at time t
: 0 if the system is down at time t
P{Failure is Type 1C)
P{Y > t, X(t) = 1)
P{Y > t, X(t) = 0)
at) = P(Y>t) =1-G(t)
(X(t) ifY>t
{ 0 ifYst
the failure rate of Type 1C failure, which is p,h(t)
the repair rate of Type 1C failure, and for the Exponential

distribution, n(t) = R,,?

a,(t+dt) = a,(t){1l ~ h(t)dt} + a,(t)u(t)dt + o(at) (5.19)

ay(t+dt) = ay (t) {1 - p(t)at) + a,(t)h(t)dt + o(dt) (5.20)

Initial conditions: a,(0) = 1 ; a,(0) = 0

Equation (5.19) becomes
d(a,)
= - h(t)a,(t) + a,(t)u(t) (5.21)
dt
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d(a,)

= - u(t)a(t) + a,(t)h(t)P (6.22)
dt

Since a,(t) = {1 - G(t)) - a,(t), Equation (5.21) becomes
d(a,)
—— m ~ B(t)ay(t) + U(t) ([l = G(t)] — a,(t)} (5.23)
dt
which can be simplified to

d(a,)

p = - {h(t) + u(t)}a;(t) + u(t){1 - G(t)} (5.24)
t

The equation,

d(a,)

+ {h(t) + u(t)) a,(t) =0 ; with ,(0) =1

has the solution
a,(t) = EXP({- E(t)}

where
EQ) = ['{his) + p(e)) ds
Therefore the equation (5.24) has the solution
a(t) = ¢ ®0 1 + fo ‘(8s) (1 - G(s)} ¢™=® ds] (5.25)

and equation (5.25) can now be written as
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[ thapontidk, [ e wiold d, (5.26)

+[InE)1-Gle)le

and for the Weibull distribution with shape parameter o and scale parameter

P =e

A, and substituting the values for h(t) and n(t) in equation (5.26), the

probability that the system is up at time t is given by

4
T e IR e T o 5.27
pl(t) o g 1 +_R_mfo‘ 1c e dz ( )
- s . + 'y —L - _"_
f ‘¢ i cadiond P a.
But theintegral 0 2 hasno closed-form

expression in terms of elementary tabulated functions. Therefore we have to
evaluate it numerically,

Since the length of the cycle, L is

{ Rp + & Y >t
L=
{ Rg + ¥ Y S ¢

then using the same principle as that used in [Ref. 16] the average availability

over a cycle of length L and hence in the long run is given by

[ a0 @ (5.28)
Expected length of a Cycle

But the Expected length of a cycle is given by equation (5.12). Therefore

Q) =

the Availability, A(t)), is given by
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fo" a,() dt
Ryll - Gt} + RylGle) + [* 1 - Gty

To study the above expression the IMSL subroutine DQDAG was used to

(5.29)

AG) =

compute the Availability function a,(t) for various values of t. Then we used
the IMSL subroutine DCSINT [Ref. 18] to compute cubic spline interpolant to
the set of data points obtained earlier (values of t and the corresponding values
of a,(t) ). Finally we used the IMSL subroutine DCSITG [Ref. 13] to evaluate
the integral of the cubic spline for various values of the replacement age t,.
From this we can compute the optimal replacement age t,’ and the maximum
availability. The values obtained by using this 'exact’ solution was compared
with the approximation as in equation (5.17). These values are tabulated
below. It is observed that both the approximate and exact solutions are the
same to three decimal places, and the approximation gives an accurate
solution, However this is true for small values of R,; and R,. As the values of
R,c and R,; are increased the accuracy of the present approximation method
degrades.

Table 5.2 shows the values of availability for o = 3.0, u = 1390, R, = 1
hr, Ryo = 16 hrs, R,, = 8 hrs. The optimal replacement age for the two methods

and the maximum availability are:
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* approximate solution 1528 hours 0.991715
* exact solution 1496 hours 0.991567

If we use the approximate solution as our reference for the replacement action,
the exact availability is 0.991565, which is extremely close to the exact
solution, and much more easily obtained.

Table 5.3 shows the values of availability for a = 3.0, n = 139, R, = 8
hr, Ry, = 24 hrs, R;p = 8 hrs. The optimal replacement age for the two methods

and the maximum availability are:

* approximate solution 1201 hours 0.989796
¢ exact solution 1113 hours 0.989070

If we use ths approximate solution as our reference for the replacement action,
the exact availability is 0.989015 which is extremely close to the exact solution.

Table 5.4 shows the values of availability for o = 3.0, p = 1380, R, = 8
hr, R,c = 72 hrs, R,p = 8 hrs. The optimal replacement age for the two methods

and the maximum availability are:

¢ approximate solution 762 hours 0.984143
¢ exact solution 736 hours 0.983835

If we use the approximate solution as our reference for the replacement action,

the exact availability is 0.983827 which is very close to the exact solution.
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Table 5.5 shows the values of availability for o = 3.5, p = 1390, R;c = 8
hr, R,c = 24 hrs, R,p = 8 hrs. The optimal replacement age for the two methods

and the maximum availability are:

¢ approximate solution 1147 hours 0.990119
¢ exact solution 1076 hours 0.989519

If we use the approximate solution as our reference for the replacement action,
the exact availability is 0.989471 which is again very close to the exact
solution.

Table 5.6 shows the values of availability for o = 2.5, pn = 1390, R, = 8
hr, R, = 24 hrs, R, = 8 hra. The optimal replacement age for the two methods

and the maximum availability are:

* approximate solution 1317 hours 0.989493
¢ exact solution 1200 hours 0.988594

If we use the approximate solution as our reference for the replacement action,
the exact availability is 0.9885636 which is once again very close to the exact
solution.

From the above results we can conclude that the approximate solution is
a good approximation for planning the replacement or overhaul actions of a

system in order to maximize the availability of the system. From our earlier
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discussion we found that the availability is sensitive to the shape parameter
a; Figure 5.2 shows the availability (exact solution) for various values of alpha.

If the shape parameter o was in fact 3.5 and in our estimation we used
o = 2.5, then we would have lost an availability of 0.000626, which is
extremely small. This shows that the parameters need not be estimated very
accurately to achieve good results.

Figure 6.2 shows that for low values of alpha such as 2.5, the availability
function is rather flat and there is more flexbility in determining the
replacement age that is, the replacement interval at 1200 hours or 1500 hours
gives about the same availability on the long run. However this is not true for
higher values of alpha such as 8.5 where the availability function falls quite
rapidly on both sides of the optimal replacement age t,". At the availability of
about 0.9883, the replacement age is 14756 hours and it is insensitive to the
value of alpha.

Now we shall also look at the effects of the scale parameter A on the
availability. Table 5.7 shows the values of availability for o = 3.0, p = 1360, R,
= 8 hr, R;c = 24 hrs, R;p = 8 hrs. The optimal replacement age for the two

methods and the maximum availability are:

* approximate solution 1167 hours 0.989496
¢ exact solution 1081 hours 0.988760
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Figuare 5.2 The Plot of ‘Exact’ Availability for Various Values of the
Shape Parameter Alpha.

If we use the approximate solution as our reference for the replacement
action, the exact availability is 0.988693 which is very close to the exact
solution.

Now if the actual scale parameter was 1390 hours and it was estimated
to be 1350 hours, then we would have lost an availability of 0.00032 which can
be considered very small.

Table 5.8 shows the values of availability for o = 8.0, p = 1450, Rjc = 8
hr, R;; = 24 hrs, R, = 8 hrs, The optimal replacement age for the two methods

and the maximum availability are:
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TABLE 5.2 COMPARISON OF AVAILABILITY FOR VALUES OF
o = 3.0, n = 1890, R,; = 1 HR, R, = 168 HRS, R,, = 8 HRS

94

Replacement Approximate Exact

Age (hours) Availability Availability
1320.0 0.991592 0.991474
1344.0 0.891621 0.991499
1368.0 0.991645 0.991520
1392.0 0.991666 0.991637
1416.0 0.991683 0.991549
1440.0 0.9916956 0.991559
1464.0 0.991706 0.991664
1488.0 0.991711 0.991667
1612.0 0.991715 0.991566
1636.0 0.8991715 0.991663
1560.0 0.991713 0.991667
1584.0 0.991709 0.991549
1608.0 0.991702 0.991638
1632.0 0.991693 0.9915626
1666.0 0.991682 0.991511




TABLE 5.8 COMPARISON OF AVAILABILITY FOR VALUES OF
a = 3.0, p = 1390, R, = 8 HRS, R, = 24 HRS, R,; = 8 HRS

| Replacement | Approximate Exact
| Age (hours) Availability Availability

1018.0 0.989570 0.988997
1042.0 0.989629 0.989080
1066.0 0.989678 0.989063
1080.0 0.989718 0.989066
1114.0 0.989749 0.988070
1138.0 0.989772 0.989066
1162.0 0.989787 0.989062

0.989794

0.989032

0.989796

0.989004

0.989789

0.988970

0.989778

0.988929

0.989760

0.988882

0.9897387

0.988830

0.989709

0.988773

0.989677

0.988710




TABLE 5.4 COMPARISON OF AVAILABILITY FOR VALUES OF

a = 8.0, p = 1890, R, = 8 HRS, R., = 72 HRS, Ry, = 8 HRS

Replacement

Age (hours)

Approximate
Avallability

Exact
Availability

6520.0 0.982280 0.982140
544.0 0.982706 0.982642
568.0 0.983067 0.982877
592.0 0.983349 0.983164
616.0 0.983588 0.983376
640.0 0.983779 0.983550
664.0 0.983926 0.983680
688.0 0.984033 0.983768
712.0 0.984102 0.983819
736.0 0.984138 0.983835
760.0 0.984141 0.983818
784.0 0.984116 0.983772
808.0 0.984061 0.983697
832.0 0.983981 0.983596
856.0 0.983877 0.983470
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TABLE 5.5 COMPARISON OF AVAILABILITY FOR VALUES OF
a-s.s,p-1890,R1°‘8HRS,R”‘24HR8,R‘F-8HRS

97

Age (hours) Availability Avalilability
844 0 0.989738 0.989330 |
968.0 0.989828 0.989394
992.0 0.989805 0.989445
1016.0 0.989969 0.989482
1040.0 0.990021 0.989606
1084.0 0.990081 0.989617
1088.0 0.990091 0.989517
1112,0 0.990110 0.989606
1136.0 0.990119 0.989484
1180.0 0.980119 0.989462
1184.0 0.980110 0.989411
1208.0 0.990092 0.989361
1282.0 0.990067 0.989302
1256.0 0.990034 0.989236
0.989994 (.989160




TABLE 5.6 COMPARISON OF AVAILABILITY FOR VALUES OF
a-2.5,]l- ISN,&OIBHRS,B”I%!HRS,R”-SHRS

Repment Approximate Ext
Age (hours) | Availability | Availability
11200 0.989330 0.988561

|| 1144.0 0.989370 0.988579

|| 1168.0 0.989404 0.988589

| 11920 0.989431 0.988594
1216.0 0.989454 0.988593
1240.0 0.989471 0.988587
1264.0 0.989482 0.988576
1288.0 0.989480 0.988560
1312.0 0.989493 0.988540
1336.0 0.989492 0.988515

| 1380.0 0.989487 0.988487
1384.0 0.989478 0.988456
1408.0 0.989466 0.988421
1432.0 0.989451 0.988383
1456.0 0.989433 0.988342
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TABLE 5.7 COMPARISON OF AVAILABILITY FOR VALUES OF

o = 8.0, p = 1350, R, = 8 HRS, R, = 24 HRS, R, = 8 HRS

0.989132

Replacement Approximate Exact
Age (hours) Availability Availability

0.988588

972.0 0.989214 0.988643
996.0 0.989284 0.988687
| 10200 0.989343 0.988718
1044.0 0.989392 0.988738
1068.0 0.989430 0.982748
1092.0 0.989459 0.988749
1116.0 0.989480 0.988740 "
1140.0 0.989492 0.988722
1164.0 0.989496 0.988697
1188.0 0.989484 0.988664
1212.0 0.989484 0.988623
1236.0 0.989468 0.988577
1260.0 0.989446 0.988523
1284.0 0.989418 0.988464
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TABLE 5.8 COMPARISON OF AVAILABILITY FOR VALUES OF
o = 3.0, n = 1450, R, = 8 HRS, R, = 24 HRS, R,; = 8 HRS.

Replacement | Approximate Exact

Age (hours) Availability Availability
1000.0 0.989812 0.989322
1024.0 0.989892 0.989379
1048.0 0.989961 0.989425
1072.0 0.990021 0.989461
1096.0 0.990072 0.989488
1120.0 0.990114 0.989508
1144.0 0.990148 0.989515
1168.0 0.990176 0.989516
1192.0 0.990194 0.989511
1216.0 0.990207 0.989497
1240.0 0.990213 0.989478
1264.0 0.990213 0.989452
1288.0 0.990208 0.989420
1312.0 0.990197 0.989382
1336.0 0.990181 0.989340

100




¢ approximate solution 1253 hours 0.990214

® exact solution 1161 hours 0.989516

If we use the approximate solution as our reference for the replacement
action, the exact availability is 0.989464 which is again very close to the exact
solution.

Now if the actual scale parameter was 1450 hours and it was estimated
to be 1350 hours, then we would have lost an availability of 0.000446 which
once again can be considered very small. This shows that the scale parameter

does not effect the availability drastically and a close eatimate is sufficient.

C. MAXIMIZE AVAILABILITY SUBJECT TO BUDGET CONSTRAINT

The availability and cost are very important measures of effectiveness.
we would like to have as many resources as possible to maximize the
availability of a system, however in reality we are often limited by budget
constraints. So we would like to achieve cost effectiveness, that is we would
like to

maximize Effectiveness Level

subject to Budget < B

The effectiveness level which is commonly used is the availability, So in
our case we would like to

Maximize  A(t)

Subject to  C(t,) s B.




We have solved this problem graphically. Figure 5.3 shows the plots of the
availability and the cost rate functions us formulated in Section B. It is
observed that the availability ie maximum at 0.991567 at an optimal
replacement interval t,’ of 1496 hours while the cost is minimum at
$22.03/hour at an optimal replacement interval t,” of 1889 hours.

Now if we have a budget of not exceeding $22.25/hour, then the maximum

availability that can be obtained is (.3915 with an optimal replacement

interval t." of 1650 hours.
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Figure 5.3 Plot Showing the Availability and the Cost Rate
Function.

The other measure of effectiveness that is also used is the mission

reliability and this again will give another optimal replacement age, 80 now we
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have a multiple independent conflicting criterion and it is up to the Decision
Maker to decide which of the measure of effectiveness is vital and fits the

scenaric very well,
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V1. CONCLUSION AND RECOMMENDATIONS

The fighting effectiveness and operational readiness of a ship depends
largely on the operational availability of her equipment and systems. If we are
not constrained by the budget then we can expend the resources necessary to
achieve the desired availability, such as incorporating more redundancies or
carrying out "premature” replacements and overhauls. However in reality this
is not the case, and we are always limited by the available budget, and we
would like to maximize system availability subject to budget constraints.

At sea, equipment and systems are exposed to various environment and
unfavourable conditions. As such, they are subject to stochastic failure and
deterioration. However, with timely maintenance actions as discussed in the
various policies in the thesis, we can minimize catastrophic and unexpected
failures, enabling us to achieve the desired measures of effectiveness.
Therefore, based on the optimal maintenance policies, we can carry out
replacement actions or complete overhaul of the equipments and systems at
the base during the stand-off periods so that when the ship is at sea we can
minimize loss of availability due to failures and maximize our successes in the
operational missions.

Based on the policies, we can also carry adequate spares. This is

particularly important for long missions or when the need to be prepositioned
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in forward operating areas. On the other hand, although we can carry spares
onboard, sometimes other support elements are not available to rectify the
defects.

In our analysis, we have assumed that we know the failure distribution.
For our case we concentrated on the Weibull distribution. The two important
parameters which are usually estimated are the shape parameter, alpha, and
the scale parameter, lambda. From the analysis it is observed that these
parameters need not be estimated very accurately. A slight variation in the
values of the parameters do not affect the long run availability and cost rate
functions drastically. Of the two, the shape parameter needs to be estimated
more accurately.

In the formulation of the availability functions, we simplified the
computation by assuming the downtime for a minimal repair to be negligible.
When compared with the exact solution, taking into account the downtime for
a minimal repair, the results obtained by the approximation method gave
extremely accurate results. Many of the functions and integrals that were
formulated did not have closed form expressions in terms of elementary
tabulated functions. However IMSL subroutines were available in the Math
library at the main frame at the Naval Postgraduate School and these
subroutines expeditiously computed the integrals very accurately.

The expected downtimes, as taken in our analysis, are practical figures

assuming all the support elements are readily avalilable when required. That
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is the reason for the high values of the availability. In reality we often have to
wait for spare parts and support elements, which sometimes have long lead
times.

In the thesis we also studied the effects of simple preventive maintenance
actions on the measures of effectiveness. It is observed that simple preventive
maintenance actions do not restore the system to a condition "as good as new"
but the maintenance actions can enhance or improve the reliability of the
system by a certain factor which decreases as the system ages. However, a
methodology for chacterizing the effective age reduction remains to be
developed. In our analysis we have assumed that the system improves by a
certain factor on completion of each preventive maintenance action.

Most planned maintenance systems usually adopt maintenance efforts
based on calendar time (weeks, months) or running hours of systems or
equipment, but from the analysis it is observed that for systems that have a
"wear-out" life distribution we shall have to successively resort to decreasing
maintenance intervals if we are going to maintain the systems above some
minimum reliability level.

This subject can be expanded further by future research. The following
areas are recommended:

¢ Carry out similar analysis, especially for the availability function for the

three policies when the underlying life distribution F' comes from a family
of Gamma Distribution.
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* Incorporate imperfect repair into the model.

¢ A methodology for chacterizing the improvement of the reliability of the
system on completion of preventive maintenance needs to be investigated.

* A system may congists of various sub-systems. The maintenance actions
for the sub-systems has to be coordinated so that instead of just taking
into account the availability of the sub-systems individually, the whole
system has to be considered bearing in mind of some dependence on the
supporting elements associated with the sub-systems.
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APPENDIX A, COMPUTER PROGRAM AND OUTPUT

PROGRAM PM

THIS PROGRAM IS FORMULATED TO COMPUTE THE AVAILABILITY,
RELIABILITY AND COST FUNCTIONS FOR VARIOUS POLICIES OF
INTEREST. THE PROGRAM DETERMINES THE OPTIMAL REPLACEMENT
OR OVERHAUL INTERVALS FOR THE SYSTEM. THE OPTIMAL
REPLACEMENT INTERVAL DEPENDS ON THE MEASURES OF
EFFECTIVENESS DESIRED AND THE RELEVANT TYPE OF POLICY
APPLICABLE TO THE SYSTEM UNDER STUDY. THE PROGRAM
UTILIZES THE IMSL SUBROUTINES FROM THE MATH LIBRARY
AVAILABLE AT THE MAIN FRAME AT THE NAVAL POST GRADUATE
SCHOOL. IT IS ASSUMED THAT THE TIME TO FAILURE FOLLOWS
THE WEIBULL DISTRIBUTION WITH SHAPE PARAMETER ALPHA AND
SCALE PARAMETER LAMBDA.

ololNololololoYolololololole

PARAMETER STATEMENT
INTEGER NDATANTINT
PARAMETER (NDATA = 81, NTINT = 20)

C VARIABLES DECLARATION

REAL*8 A, B, F, RESULT, ERRABS, ERRREL, ERREST, ALPHA,

LAMBDA, MU, C2C, C1C, C2P, R2P, R2C, R1P, RIC,

Al, AA, XDATA(NDATA), YDATA(NDATA),

BREAK(NDATA), CSCOEF(4,NDATA), AVAIL, AVAILL1,

P1, P2, SOLN, SF, CDF, LENGTH, G, H, ANSWER,

DCSITG, COST, COSMIN, ANS, D, REL, E, EE, FF,

TD2P, TDT1, TDT2, SUMD1P, SUMD2C, STIME, TL,

CDFTL, T(NTINT), REL, R, TDT, UPTIME, TD1P, ¢
SUM, SUM], X, XX, LL, UL, STEP

INTEGER IRULE,POL,P,SPMREQNN
C VARIABLES DEFINITION

e

108




ololololelololnlolslolololololsiolololololololololololoYololoYolololelololoYololoo oXo Yo o]

A LOWER LIMIT OF INTEGRATION USED IN
ARGUMENT OF THE IMSL SUBROUTINE DQDAG AND
IMSL FUNCTION DCSITG

- S UPPER LIMIT OF INTEGRATION USED IN
ARGUMENT OF THE IMSL SUBROUTINE DQDAG AND
IMSL FUNCTION DCSITG

E.EEF,FF,G,H.. FUNCTIONS TO BE INTEGRATED

RESULT........ ESTIMATE OF THE INTEGRAL FROM A TO B OF
THE FUNCTIONS E,EE,F,FF

ERRABS........ABSOLUTE ACCURACY DESIRED AS THE INPUT
ARGUMENT OF THE IMSL SUBROUTINES DQDAG

ERRREL........RELATIVE ACCURACY DESIRED AS THE INPUT
ARGUMENT OF THE IMSL SUBROUTINES DQDAG

IRULE.........CHOICE OF QUADRATURE RULE (SEE APPENDIX
2)

ALPHA.......... SHAPE PARAMETER OF WEIBULL DISTRIBUTION

LAMBDA......... SCALE PARAMETER OF WEIBULL DISTRIBUTION

MU...oinin RECIPROCAL OF LAMBDA

C2C...........EXPECTED COST OF A FAILURE REPLACEMENT

C1C.....cn. EXPECTED COST OF A MINIMAL REPAIR

C2P............EXPECTED COST OF A PREVENTIVE REPLACEMENT

R2C...........EXPECTED DOWNTIME OF A FAILURE
REPLACEMENT

R1C....... +.EXPECTED DOWNTIME OF A MINIMAL REPAIR

R2P............ EXPECTED DOWNTIME OF A PREVENTIVE

REPLACEMENT
Al..iins %(;)MPUTE EXPONENTIAL EXPRESSION (POLICY
Aldiinenni AVAILABILITY AT TIME T (POLICY II)

NDATA.......... NUMBER OF DATA POINTS FOR COMPUTING CUBIC
SPLINE INTERPOLANT. INPUT ARGUMENT FOR
IMSL SUBROUTINE DCSINT

XDATA( ).....ARRAY OF LENGTH NDATA CONTAINING THE DATA
POINTS ABSCISSAS. INPUT ARGUMENT FOR IMSL
SUBROUTINE DCSINT

YDATA( ).....ARRAY OF LENGTH NDATA CONTAINING THE DATA
POINTS ORDINATES. INPUT ARGUMENT FOR IMSL
SUBROUTINE DCSINT

BREAK( ).....ARRAY OF LENGTH NDATA CONTAINING THE
BREAKPOINTS FOR THE PIECEWISE CUBIC
REPRESENTATION. OUTPUT ARGUMENT OF THE
IMSL SUBROUTINE DCSINT

CSCOEF......... MATRIX OF SIZE 4 BY NDATA CONTAINING THE
LOCAL COEFFICIENTS OF THE CUBIC PIECES.
OUTPUT ARGUMENT OF THE IMSL SUBROUTINE
DCSINT

108




AVAIL.......... APPROXIMATE AVAILABILITY
ANSWER......... EXACT AVAILABILITY

Pl...cuers PROBABILITY OF TYPE I (MINIMAL) FAILURE
P2....ccouuene PROBABILITY OF TYPE II (MAJOR) FAILURE
SF..cvneeenn SURVIVAL FUNCTION

CDF.....ceees DISTRIBUTION FUNCTION

LENGTH........LENGTH OF A CYCLE

COST, COSMIN...COST RATE FUNCTION

Do ..MISSION DURATION

REL...........RELIABILITY

TD2P,TDT2.....TOTAL DOWNTIME OF PREVENTIVE REPLACEMENT

TD1P,TDT1.....TOTAL DOWNTIME OF PREVENTIVE MAINTENANCE

SUMDIP .......TOTAL DOWNTIME WHEN TIME OF FAILURE IS
AFTER PREVENTIVE REPLACEMENT

SuUMD2C ........ TOTAL DOWNTIME WHEN TIME OF FAILURE IS
BEFORE PREVENTIVE REPLACEMENT

STIME .........TOTAL DOWNTIME IN A CYCLE

UPTIME ........ TOTAL UPTIME IN A CYCLE

LL ...osre LOWER LIMIT OF REPLACEMENT INTERVAL

UL...........UPPER LIMIT OF REPLACEMENT INTERVAL

STEP........... STEP SIZE OR INCREMENT

POL...........POLICY YO BE EVALUATED

SPMREQ........SIMPLE PREVENTIVE MAINTENANCE REQUIREMENT

ofellNeloYoloYololofololololololololololololololodo

EXTERNAL SUBROUTINES AND FUNCTIONS
EXTERNAL E,EE F,FF,G,H,DQDAG,DCSINT,DCSITG

Qo

COMMON BLOCKS

COMMON /FT/ R1C,B

COMMON /GT/ P2

COMMON /1T/ P1

COMMON /HT/ LAMBDA,ALPHA

INITIALIZATION

A = 0.0D0
ERRABS = 0.0D0
ERRREL = 0.00001D0
IRULE =2

PREL = 1.0D0
SUMDI1P = 0.0D0
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SUMD2C = 0.0D0
STIME = 0.0D0
SUM =0.0D0

Prompt the user for the pclicy to be evaluated

POLICY I -----.- AGE REPLACEMENT
POLICY II =seee AGE REPLACEMENT WITH MINIMAL REPAIR
POLICY III -»--- AGE REPLACEMENT WITH TWO TYPES OF
FAILURES. TYPE 1 MINIMAL FAILURE, TYPE
II MAJOR FAILURE

PRINT* ’ENTER THE NUMBER CF THE POLICY TO BE EVALUATED’
READ*,POL

PRINT*,'POLICY = ’,POL

GOTO (100,200,300),POL

100 CONTINUE

PRINT*,'DO YOU WANT TO INCLUDE SIMPLE PREVENTIVE
& MAINTENANCE-ENTER 1 FOR NO AND 2 FOR YES

READ*,SPMREQ

GOTO (125,150),SPMREQ

oYololololNo o

C

C POLICY I (AGE REPLACEMENT-NO SIMPLE PREVENTIVE
g MAINTENANCE)

125 CONTINUE

PRINT*’ENTER THE ESTIMATED VALUES FOR THE SHAPE
& PARAMETER ALPHA AND THE SCALE PARAMETER MU’
READ*, ALPHA MU

PRINT*'ALPHA =', ALPHA,'MU = 'MU

PRINT*'ENTER ESTIMATED VALUES FOR THE EXPECTED COST OF
& PREVENTIVE REPLACEMENT FOLLOWED BY THE EXPECTED
& COST OF FAILURE REPLACEMENT
' READ*,C2P,C2C
8I:RIN’I"",’li!XPEC’I‘ED COST OF A PRéEVENTIVE REPLACEMENT =
", C2P
g +EXPECTED COST OF A FAILURE REPLACEMENT =
"C2C

PRINT*’ENTER VALUES FOR THE EXPECTED DOWNTIME OF
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& PREVENTIVE REPLACEMENT FOLLOWED BY EXPECTED
& DOWNTIME OF A FAILURE REPLACEMENT

READ*,R2P,R2C

PRINT*'EXPECTED DOWNTIME OF A PREVENTIVE REPLACEMENT =
& ’R2P

& ,’EXPECTED DOWNTIME OF A FAILURE REPLACEMENT =

& "R2C

PRINT*’ENTER THE VALUE OF MISSION DURATION TIME IN

& HOURS'

READ*,D

PRINT*’ MISSION DURATION TIME =’, D, 'HOURS’

PRINT*'ENTER THE VALUE FOR LOWER LIMIT, UPPER LIMIT,
& STEP SIZE '

READ*LL,UL,STEP

PRINT*'LOWER LIMIT = ', LL,’'UPPER LIMIT = ',UL/STEP =

& ' STEP

WRITE(80,101)ALPHA,MU,C2P,C2C,R2P,R2C,D
101 FORMAT(16X,’POLICY",8X,T,3X,(AGE REPLACEMENT)
& /,15X,30(-)//,
& 10X’ALPHA = 'F8.1,17X, '™MU = "F6.1,/,
& 10X'C2P = $F7.1,12X, 'C2C = §,F7.1/,
& 10X,R2P ='JF4.1' HOURS,11X,R2C = 'F4.1,
& HOURS
& ’/,10X,’'MISSION DURATION = ’JF4.1 HOURS'//,
& 5X,’REPLACEMENT",6X,'COST RATE',5X,’AVAILABILITY',5X,
& 'MISSION RELIABILITY’/,
& 5X,’AGE (HOURS),5X,($/HHOUR),,10X,'(A), 17X(RY/,
& BX,11(<),  BX.,8(-), 6X,12(-), 5X,18(-")

LAMBDA = 1.0DO/MU

DO 11 I = LL,UL,STEP
B=DBLE(I)
CALL DQDAG (E,A,B,ERRABS,ERRREL,IRULE,RESULT,ERREST)
SF=EXP(-(LAMBDA*B)**ALPHA)) ‘
CDF=1.0D0-SF
COST=((C2P*SF}+(C2C*CDF))V(R2P*SF)+(R2C*CDF)+RESULT)
AVAIL=RESULT/(R2P*SF»+(R2C*CDF)+RESULT) ‘
REL= DEXP(-((LAMBDA*(B+D))**ALPHA)) /

& DEXP(<((LAMBDA*B)**ALPHA))

WRITE(30,102)B,COST,AVAIL,REL
102 FORMAT(5X,F7.1,9X,F8.3,8X,F8.6,12X,F8.6)
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11 CONTINUE

GOTO 99
C
C POLICY I (AGE REPLACEMENT - WITH SIMPLE PREVENTIVE
C MAINTENANCE)
C
150 CONTINUE

PRINT*’ENTER THE ESTIMATED VALUES FOR THE SHAPE

& PARAMETER ALPHA AND THE SCALE PARAMETER MU’
READ*,ALPHA MU

PRINT*’ALPHA =’ ALPHA,’'MU =’ MU

PRINT*’ENTER VALUES FOR THE EXPECTED DOWNTIME OF

& PREVENTIVE REPLACEMEN'I' FOLLOWED BY EXPECTED

& DOWNTIME OF A FAILURE REPLACEMENT

READ*R2P,R2C -

&PRNT"','EXPECTED DOWNTIME OF A PREVENTIVE REPLACEMENT =
’ 'Rzp

g , 'EXPECTED DOWNTIME OF ’ARg‘éILURE REPLACEMENT =

PRINT*'ENTER THE EXPECTED DOWNTIME FOR SIMPLE
& PREVENTIVE MAINTENANCE AND THE IMPROVEMENT
& FACTOR ON COMPLETION OF THE MAINTENANCE'

READ*R1P,R

&?RINT*,”I‘HE DOWNTIME FOR SIMPLE PREVENTIVE MAINTENANCE
=" R1P

& ,THE IMPROVEMENT FACTOR ="R

PRINT*/ENTER THE VALUE FOR LOWER LIMIT, UPPER LIMIT,
& STEP SIZE'

READ*,LL,UL,STEP

PRINT*'LOWER LIMIT = ’,LL,’'UPPER LIMIT = ,UL,'STEP =

& ""STEP

WRITE(30,103)ALPHA MU ,R2P,R2C,R1P,R
108 FORMA'I'(5X,’POLICY’,2X,T',2X,(AGE REPLACEMENT WITH
& SIMPLE’,1X, 'PREVENTIVE MAINTENANCE)//,8X,
& 63 (), //,
& 10X’ALPHA = 'F3.1,17XMU = 'F6.1,,
& 10X,R2P ='F4.1,’ HOURS'11X,R2C = 'F4.1;
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& HOURS',/,10X,;R1P ='F4.1’ HOUR,12X,R =

& 'JF4.1//,

& 5X,/NO. OF INTERVAL',5X, REPLACEMENT AGE (HOURSY,5X,
& 'AVAILABILITY'/,5X,15("-),5%X,28(-"),5X,12(-"))

LAMBDA = 1,0D0/MU

T(1) = (1.0DO/LAMBDA)*(((LOG(0.75D0)))**

& (1.0DO/ALPHA))

CDF = 1.0D0 - EXP(-((LAMBDA*T(1))**ALPHA))
SF = 1.0D0-CDF

B = T(1)

DO 10 I = 1,NTINT
IF (I .GT. 1) THEN
T(I) =T(I-1)+{((1.0D0-R)**(I-1))*T(1)) '
END IF

10 CONTINUE

DO 20 N = LL,UL,STEP
IF (N .EQ. 1) THEN
TDT = (R2P*SF)+(R2C*CDF)
A =0,0D0
CALL DQDAG(FF,A,B,ERRABS,ERRREL,IRULE,RESULT,
& ERREST)
EI.%II’BTME = (ALPHA*(LAMBDA**ALPHA)*RESULT)+(SF*T(1)}
DO 30 J = le
IF (J .EQ. 1) THEN
TL = 0.0D0
ELSE
TL = T(1)«(T(J)-T(J-1))
END IF

CDFTL = 1-EXP(-(LAMBDA*TL)**ALPHA))
REL = 1-(CDF-CDFTL)
PREL = PREL*REL

30 CONTINUE

TD1P = (N-1)*R1P*PREL

TD2P = R2P*PREL

TDT1 = TD1P+TD2P ‘
FREL = 1.0D0

DO40K = 2N
DOSOL = 1,K-1
IF (L .EQ. 1) THEN
TL = 0.0D0
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ELSE
TL = T(1)-(T(L)-T(L-1))
END IF

CDFTL = 1-EXP(-((LAMBDA*TL)**ALPHA))
REL = 1-(CDF-CDFTL)
PREL = PREL*REL

50 CONTINUE

TL = T(1)(T(K)-T(K-1))
CDFTL = 1-EXP(-((LAMBDA*TL)**ALPHA))
FT = CDF-CDFTL
SUMDI1P = SUMD1P+((K-1)*R1P*PREL*FT)
SUMD2C = SUMD2C+(R2C*PREL*FT)
PREL = 1.0D0

40 CONTINUE

TDT2 = SUMD1P+SUMD2C+(R2C*CDF)
TDT = TDT1+TDT2
PREL = 1.0D0
DO 60 M =2,N
DO70P = 1,M-1
IF (P .EQ. 1) THEN
TL = 0.0D0
ELSE
TL = T(1)(T(P)-T(P-1))
END IF

CDFTL = 1.EXP(-((LAMBDA*TL)**ALPHA))
REL = 1-(CDF-CDFTL)
PREL = PREL*REL

70 CONTINUE

A = T(1)-(T(M)-T(M-1))
CALL DQDAG(FF.A,B,ERRABS,ERRREL,IRULE,RESULT,
& ERREST)
ANSWER = ALPHA*LAMBDA**ALPHA)*RESULT
TL = T(1)-(T(M)-T(M-1))
CDFTL = 1-EXP({((LAMBDA*TL)**ALPHA))
REL = 1(CDF-CDFTL)
ANSWER = ANSWER+(REL*(T(M)-T(M-1)))
STIME = STIME +(PREL*ANSWER)
PREL = 1.0D0
60 CONTINUE

A = 0.0D0

CALL DQDAG (FF,A,B,FRRABS,ERRREL,IRULE,
& RESULT,ERREST)
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ANSWER = (ALPHA%LAMBDA**ALPHA)*RESULT) +

$ (8F*T(1))
UPTIME = STIME+ ANSWER
END IF
AVAIL = UPTIMEAUPTIME+TDT)
WRITE(80,104)N,T(N),AVAIL
20 CONTINUE
104 FORMAT(10X,18,19X,F6.1,17X,F8.6)
GOTO 99
C
g POLICY II (AGE REPLACEMENT - WITH MINIMAL REPAIR)
200 CONTINUE

PRINT*,’'ENTER THE ESTIMATED VALUES FOR THE SHAPE

& PARAMETER ALPHA AND THE SCALE PARAMETER MU’
READ*,ALPHA,MU

PRINT*’ALPHA =’ ALPHA,’MU = MU

PRINT*,’ENTER ESTIMATED VALUES FOR THE EXPECTED COST OF
& PREVENTIVE REPLACEMENT FOLLOWED BY THE EXPECTED
& COST OF MINIMAL REPAIR’

READ*,C2P,C1C
:RM‘,’E}G’ECTED COST OF A PREVENTIVE REPLACEMENT =
’,C2P
: yEXPECTED COST OF A MINIMAL REPAIR =
"C1C

PRINT*,’ENTER VALUES FOR THE EXPECTED DOWNTIME OF
& PREVENTIVE REPLACEMENT FOLLOWED BY EXPECTED
& DOWNTIME OF A MINIMAL REPAIR’

READ* R2P,R1C
L PRINT*,’/EXPECTED DOWNTIME OF A PREVENTIVE REPLACEMENT' =
- & " R2P
& ,’EXPECTED DOWNTIME OF A MINIMAL REPAIR =
& "R1C

PRINT*,’ENTER THE VALUE FOR LOWER LIMIT, UPPER LIMIT,
& STEP SIZE’

READ*,LL,UL,STEP

PRINT*, ’'LOWER LIMIT = ’,LL,'UPPER LIMIT = ",UL,'STEP =

& 'STEP
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LAMBDA = 1.0DO/MU

PRINT*,’'DO YOU WANT TO INCLUDE SIMPLE PREVENTIVE
& MAINTENANCE-TYPE 1 FOR NO AND 2 FOR YES'
READ* SPMREQ

GOTO (225,250),SPMREQ

C
C POLICY Il (AGE REPLACEMENT - WITH MINIMAL REPAIR WITHOUT

C SIMPLE PREVENTIVE MAINTENANCE)
C
225 CONTINUE

WRITE(30,105)ALPHA,MU,C2P,C1C,R2P,R1C
105 FORMAT(9X,'POLICY",2X,'Il",2X,(AGE REPLACEMENT WITH
& MINIMAL',1X,’REPAIR)'/,9X,50(-"),//,
& 10X,’ALPHA = 'F8.1,19XMU = 'F6.1/,
& 10X'C2P =~ $F7.112X'C1C = §F7.1,,
& 10X,R2P ='F4.1' HOURS,11X,R1C = 'F4.1/)
& HOURS'//,5X,’'REPLACEMENT",6X,’COST",10X,APPROXIMATE",
& 8X/EXACT'/, 5X,AGE HOURSY),5X,'$ HOUR',9X,
& AVAILABILITY’, 4X, 'AVAILABILITY’/,5X,11(-"),
& 5X,7(), 8X,12("),4X,12(-")

DO 12 I = (,4000,50
B=DBLE(I)
CALL DQDAG (EE,A,B,ERRABS,ERRREL,IRULE RESULT,ERREST)
Al «DEXP({(((LAMBDA*B)**ALPHA)+(B/R1C)))
AA = A1+(RESULT*(1.0DO/R1C) )
WRITE(18,")B,AA
12 CONTINUE

REWIND (13)
DO 22 J = 1, NDATA
READ(13,)XDATA(J),YDATA(J)
22 CONTINUE
CALL DCSINT(NDATA XDATA,YDATA,BREAK,CSCOEF)

C
C Calculate the integral of the spline
C approximation.
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DO 32 K = LL,UL,STEP
B = DBLE(K)
NINTV = NDATA -1
. ANSWER = DCSITG(A,B,NINTV,BREAK,CSCOEF)
ANSWER = ANSWER/AB+R2P)
AVAIL = (B-(R1C*((LAMBDA*B)**ALPHA)))/(B+R2P)
AVAIL1 = B/(B+R2P+(R1C*(LAMBDA"B)**ALPHA)))
COST = ((C1C*(LAMBDA*B)**ALPHA))+C2P)(B+R2P)
WRITE (30,108) B,COST,AVAILANSWER
32 CONTINUE
106 FORMAT(7X,F6.1,6X,F9.4,10X,F8.6,8X,F8.6)

GOTO 99

C
C POLICY Il (AGE REPLACEMENT - WITH MINIMAL REPAIR AND
g SIMPLE PREVENTIVE MAINTENANCE)

250 CONTINUE

PRINT*’ENTER THE EXPECTED COST OF A SIMPLE PREVENTIVE
& MAINTENANCE FOLLOWED BY THE IMPROVEMENT IN THE
& AGE IN HOURS ACHIEVED ON COMPLETION OF THE
& MAINTENANCE’

READ*,C1P,XX

:RINT*,'EXPECTED COST OF SIMPLE PREVENTIVE MAINTENANCE
=',C1P,

& 'IMPROVEMENT IN AGE(HOURS) = ' XX

PRINT*’ENTER THE NUMBER OF SIMPLE PREVENTIVE
& MAINTENANCE ACTIONS TO BE TAKEN IN A CYCLE'’

READ*NN
PRINT*'NUMBER OF SIMPLE PREVENTIVE MAINTENANCE ACTIONS
& = 'NN

PRINT*’ENTER THE VALUE FOR LOWER LIMIT, UPPER LIMIT,
& STEP SIZE’
READ*,LL,UL,STEP
:RIN'I;‘,’LOWER LIMIT = ’,LL,'UPPER LIMIT = ",UL/STEP =
" STEP

WRITE(30,107)ALPHA ,MU,C2P,C1C,C1P, XX,NN
107 FORMAT(8X,’POLICY’,2X,'IT',2X,"(AGE REPLACEMENT WITH
& MINIMAL REPAIR AND SIMPLE PM )
& '/,8X,65(-)//,
& 10X’ALPHA = 'F3.1,17XMU = 'F6.1/,

118




& 10X'C2P = §F7.1,12X'CI1C = §,F7.1,,

& 10X'C1IP = $F7.1,12X'XX = 'F6.1 HOURS'/,

& 10X,'NO. OF SIMPLE PM ='NN,/,

& 5X,’REPLACEMENT",6X,’COST"/, 5X,AGE (HOURSY),5X,’
& $HOUR' /,6X,11(-"),6X,7(-"))

DO 6 J = LL,UL,STEP
B = REAL(J)
X = XX
IF ((X-B) .GE. 0) THEN
X=B
. END IF

DO 71 = O,NN-1
’ SUM1 = C1C*LAMBDA**ALPHA)*(((B+((B-X)*I))**ALPHA)
& - (B-X)**ALPHA)%(I**ALPHA)))
SUM = SUM + SUM1
7 CONTINUE

COST = (SUM + ((NN-1)*C1P) +C2P) / (NN*B) +R2P)
LENGTH = B*REAL(NN)
WRITE(30,108)LENGTH,COST

108  FORMAT(3X,F6.1,5X,F9.4)
SUM = 0.0

6 CONTINUE

GO TO 99

C
C POLICY III (AGE REPLACEMENT - WITH TWO TYPES COF FAILURE)

C
300 CONTINUE

PRINT*’ENTER THE ESTIMATED VALUES FOR THE SHAPE
&  PARAMETER ALPHA AND THE SCALE PARAMETER MU’
) READ*,ALPHA MU
PRINT*’ALPHA =’ ALPHA,’MU = MU

! PRINT*’ENTER ESTIMATED VALUES FOR THE EXPECTED COST OF
& PREVENTIVE REPLACEMENT FOLLOWED BY THE EXPECTED
& COST OF FAILURE REPLACEMENT, AND COST OF MINIMAL
& REPAIR’
READ*,C2P,C2C,C1C

PRINT*’EXPECTED COST OF A PREVENTIVE REPLACEMENT =
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& ' C2P
& EXPECTED COST OF A FAILURE REPLACEMENT =
& » 020

& EXPECTED COST OF A MINIMAL REPAIR =

& ' 010

PRINT*'ENTER VALUES FOR THE EXPECTED DOWNTIME OF
& PREVENTIVE REPLACEMENT FOLLOWED BY EXPECTED
& DOWNTIME OF A FAILURE REPLACEMENT AND DOWNTIME
& OF MINIMAL REPAIR’
READ* R2P,R2C,R1C
:RINT"'.'.EXPECTED DOWNTIME (?F A PREVENTIVE REPLACEMENT =
,R2P
: , 'EXPECTED DOWNTIME OF A FAILURE REPLACEMENT =
’ mc .
& ,’EXPECTED DOWNTIME OF A MINIMAL REPAIR =
"R1C

PRINT*'ENTER THE VALUE FOR LOWER LIMIT, UPPER LIMIT,
& STEP SIZE '

READ*,LL,UL,STEP

:Rm”l‘s""i%gWER LIMIT = ’,LL,’'UPPER LIMIT = '\UL,/STEP =

PRINT*’ENTER VALUES FOR THE PROBABILITY OF MINIMAL
& FAILURE AND MAJOR FAILURE'

READ*,P1,P2

PRINT*,‘THE PROBABILITY OF MINIMAL FAILURE = 'P1,
& AND PROBABILITY OF MAJOR FAILURE = 'P2

PRINT*’ENTER THE VALUE FOR LOWER LIMIT, UPPER LIMIT,
& STEP SIZE’

READ*,LL,UL,STEP

:RII*X"I;'i:IégWER LIMIT = ’,LL,'UPPER LIMIT = ", UL'STEP =

LAMBDA = 1.0D0/MU \

WRITE(30,109)ALPHA,MU,C2P,C2C,C1C,R2P,R2C,R1C,P1,P2
108 FORMAT(8X,’POLICY’,2X,TII',2X,'(AGE REPLACEMENT WITH ’
& TWO TYPES OF FAILURE'/,9X,55()//,
& § SX’ALPHA = ' JF3.1,11X’MU = 'F6.1,,
& 5X/C2P = $,F7.1,6X'C2C = ¢ F7.1,7X/C1C =
& $.F7.1/, 5XR2P ='F4.1, HOURS'5X,R2C =
& 'F4.1) HOURS8X, R1C = 'JF4.1' HOURS'/5X,
& 'PROBABILITY OF TYPE I FAILURE =’JF8§.1/,5X,
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& 'PROBABILITY OF TYPE II FAILURE ='F3.1,//,

& ,5X’REPLACEMENT,6X,’COST",10X,’APPROXIMATE",8X,
& 'EXACT'/, 5X’AGE (HOURS) ,5X,/'$/HOUR’,9X,’

& AVAILABILITY'4X,'AVAILABILITY/,6X,11(-),

& 4X,8(-),8X,12(-), & 4X,12(-))

DO 138 I = 0,4000,50
B=DBLE(])

C CALL IMSL SUBROUTINE DQDAG
CALL DQDAG (F,A,B,ERRABS,ERRREL,IRULE,RESULT,ERREST)

Al = DEXP(-(((LAMBDA*B)**ALPHA)*P1)+(B/R1C)))
AA = A1+(RESULT%(1.0DO/R1C) )

C OUTPUT THE AVAILABILITY AT TIME T TO FILE 18

WRITE(18,29)B,AA
29 FORMAT(1XF6.1,15X,F8.6)

13 CONTINUE
REWIND (18)

DO 48 J = 1, NDATA
REAIDX(18,*)XDATA(J),YDATA(J)
43 CONTINUE

CALL DCSINT(NDATA XDATA,YDATA,BREAK,CSCOEF)

Calculate the integral of the spline
approximation.
DO 33 K = LL,UL,STEP
B = DBLE(K)
NINTV = NDATA - 1
CALL DQDAG (G,A,B,ERRABS,ERRREL,IRULE,SOLN,ERREST)
SF = DEXP(-(P2*((LAMBDA*B)**ALPHA)))
CDF = 1.0D0-SF
LENGTH = (R2P*SF)+(R2C*CDF+SOLN
AVAIL1 = SOLN/LENGTH

ANSWER = DCSITG(A,B,NINTV,BREAK,CSCOEF)
AVAIL » ANSWER/LENGTH

CALL DQDAG (H,A,B,ERRABS,ERRREL,IRULE,ANS,ERREST)

oYoXo]
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COST = (C1C*SF*(P1*(LAMBDA*B)**ALPHA)) + (C2P*SF) +
& (C2C*CDF) + (ALPHA*P1*P2*C1C*(LAMBDA**
& (2.0D0*ALPHA)) *ANS)

COSMIN = COST / LENGTH

WRITE (30,110) B,COSMIN,AVAIL1,AVAIL
33 CONTINUE
110 FORMAT(7X,F6.1,6X,F'9.5,10X,F8.6,8X,F'8.6)

99 STOP ‘
END

DOUBLE PRECISION FUNCTION E(T)
REAL*8 LAMBDA,ALPHA,T

COMMON /HT/ LAMBDA,ALPHA
E«DEXP(-((LAMBDA * T)**ALPHA))
RETURN

END

DOUBLE PRECISION FUNCTION EE(T)

REAL*8 LAMBDA,ALPHA,T,R1C,B

COMMON /HT/ LAMBDA,ALPHA

COMMON /FT/ R1C,B

EE«DEXP(<(((LAMBDA * B)**ALPHA)((LAMBDA*T)**ALPHA) +
& (B/RIC)
&<T/R1C)))

RETURN

END

DOUBLE PRECISION FUNCTION K(T)

REAL*8 LAMBDA,ALPHA,T,R1C,B,P1,P2

COMMON/FT/ R1C,B .
COMMON /HT/ LAMBDA,ALPHA

COMMON/T/ P1

COMMON /GT/ P2 '
F=DEXP(«((((LAMBDA * B)**ALPHA)*P1) -

& (((LAMBDA*T)**ALPHA)*P1)+(B/R1C) (T/R1C) +

& ((LAMBDA*T)**ALPHA)*P2)))

RETURN

END
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DOUBLE PRECISION FUNCTION FF(T)

REAL*8 LAMBDA,ALPHA,T

COMMON /HT/ LAMBDA ALPHA
FF=(T**ALPHA)*(DEXP(-(LAMBDA * T)**ALPHA)))
RETURN

END

DOUBLE PRECISION FUNCTION ((T)
REAL*8 LAMBDA,ALPHA,T,P2
COMMON/GT/ P2

' COMMON /HT/ LAMBDA,ALPHA
GuDEXP(-(P2*(LAMBDA*T)**ALPHA)))
RETURN

* END

DOUBLE PRECISION FUNCTION H(T)
REAL*8 LAMBDA,ALPHA,T P2
COMMON/GT/ P2

COMMON /HT/ LAMBDA,ALPHA
Hu(T**((2.0D0*ALPHA)-1.0D0)) *

& DEXP(-(P2*(LAMBDA*T)**ALPHA)))
RETURN

END
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POLICY 1 (AGE REI'L4CEMENT)

. . ALPHA = 3.0 MU = 1390.0
C2P = $25000.0 C2C »: $387500.0
K R2P = 8.0 HOURS R2C = 16.0 HOURS
MISSION DURATION = 24.0 HOURS
i REPLACEMENT COST RATE AVAILABILITY MISSION RELIABILITY
? AGE (HOURS) ($/HOUR) (A) (R)
! 800.0 §2.781 0.988396 0.977947
950.0 31.900 0.988565 0.975493
1000.0 31.178 0.988681 0.972916 *
| 1050.0 30.592 0.988752 0.870214
‘ 1100.0 30.123 0.988788 0.9687391
1150.0 29,754 0.988786 0.864447
1200.0 29.472 0.988761 0.961383
1250.0 29.263 0.988713 0.958200
1300.0 20.115 0.988649 0.954809
1350.0 29.020 0.988571 0.851482
1400.0 28.968 0.988483 0.947951
1450.0 28,951 0.988389 0.944308
1500.0 28.962 0.988200 0.940549
1560.0 28.995 0.988191 0.936681

16800.0 29,043 0.988093 0.932704




POLICY 1 (AGE REPLACEMENT WITH SIMPLE PREVENTIVE MAINTENANCE)

ALPHA = 8.0 MU = 1390.0
R2P = 8.0 HOURS R2C = 48.0 HOURS
RIP = 1.0 HOUR R = 01
NO. OF INTERVAL REPLACEMENT AGE (HOURS) AVAILABILITY
. 1 917.6 0.979421
2 1743.4 0.982197
8 2486.7 0.983305
4 3155.8 0.983591
8 8757.7 0.983585
8 4209.5 0.983480
7 4787.1 0.983344
8 5226.0 0.983206
9 5821.0 0.983075
10 5976.5 0.982855
11 6296.5 0.982848
12 6584.4 0.982751
13 6843.6 0.982664
14 7076.8 0.982587
18 7286.7 0.982518
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POLICY II (AGE REPLACEMENT WITH MINIMAL REPAIR)

ALPHA = 3.0 MU = 1390.0
C2P = $25000.0 C1C =~ $37500.0
R2P = 8.0 HOURS R1C = 1.0 HOURS
REPLACEMENT COST APPROXIMATE EXACT
AGE (HOURS)  $/HOUR AVAILABILITY AVAILABILITY
1200.0 40.6693 0.992845 0.992847 '
1300.0 42.6667 0.993258 0.993261
1400.0 44.9682 0.998593 0.993595
1500.0 47.8289 0.993862 0.983865
1600.0 51.1154 0.994076 0.994080
1700.0 54.8018 0.994245 0.994249
1800.0 58.8682 0.994374 0.994879
1900.0 63.2987 0.994469 0.994474
2000.0 68.0807 0.994532 0.994539
2100.0 78.2039 0.984569 0.994576
2200.0 78.6598 0.994581 0.994589
2300.0 84.4415 0.994871 0.994580
2400.0 90.5432 0.994540 0.994551
2500.0 96.9601 0.994490 0.994503

2600.0 108.€880 0.994428 0.994437




POLICY III (AGE REPLA TYPES OF FAILURE

ALPHA = 3.0 MU = 1390.0
C2P = $25000.0 C2C = $37500.0 C1C = $ 1000.0
R2l’ = 8.0 HOURS R2C = 24.0 HOURS R1C = 8.0 HOURS

PROBABILITY OF TYPE I FAILURE = 0.8
PROBABILITY OF TYPE II FAILURE = 0.4

' REPLACEMENT COST APPROXIMATE EXACT
AGE ZIOURS)  $4IOUR AVAILABILITY ~ AVAILABILITY
* 1018.0 27.30690 0.989570 0.988997
1042.0 26.88558 0.989629 0.989030
1068.0 26.491587 0.989678 0.989058
1080.0 26.12318 0.989718 0.989066
1114.0 25.77884 0.989749 0.989070
1138.0 25.45711 0.989772 0.989065
1162.0 25.15686 0.989787 0.988052
1188.0 24.87625 0.989794 0.9890382
1210.0 24.61474 0.989795 0.989004
1284.0 24.37107 0.989789 0.988870
1258.0 24.14424 0.989778 0.988929
1282.0 23.98333 0.988760 0.988882
1306.0 28.737147 0.9897387 0.988830
1380.0 238.55683 0.988708 0.988773
1354.0 23.38787 0.989677 0.988710
1878.0 23.23225 0.989839 0.688643
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APPENDIX B. DERIVATION OF COST RATE
AND AVAILABILITY FUNCTIONS

Let T be the time to failure
T>¢t
cal © ,
{ ¢ TS¢,

Then B[C] = ¢, P[T>t,] + C; P[TSt,]
=G PI1l ~ F(t,)] + C PIF(ty)]

{ R +¢, T >t
L=
{ R+ 7T TS¢e,
Then®[L] = E[L | T > ¢,) P[T > ¢,] + B[L | T s &) PIT S ¢,)
Now,
PIT St | TSt mPITSt, TSt
PIT S ¢,]
{ ¥()
{ if £ S ¢,
= Ty
{ 1 if € > ¢,
Then,
. [ 20
BT |Tst)=[? m,)d'
Therefore

E[L] = (R +t)[1-TF(t)] + R F(L)] + fo" t A1) dt




=R O[1-F()] +R [F(E)] + &, [1-F(t)] +

fo"tj(t)dt

=R [1-F(t,)] + R [F(t)] + ¢, =t F(t,)) +

j;" t ) dt

The integral fo ¢ ) dt can be simplified by using

.fudv-uv-lvdu

then [Pefi)demt, Rity) - [? F)
now B[L] = B, [1 = F(t,)] + B [F(t,)] + ¢, = [7FQ)d
=R [1-F(t)] + R [P+ [ra - [PFOa

=R [1-F(t)) + R [F(E)] + [P - FO) a

=R, [1=F(t)] + R [F(t,)] + M(L)
where N(t,) = o" [l - F(®)) at

E[C]

Now C(t,) =
E[L)

G, P[1 - F(t,)] + C, P[F(t,))

Ro[1-TFE)] + R P+ [P - FOlat
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Setting  dC(t,)
dt,
wegetC, £(t,) [*[1-FOl& -G £ [P -FOIE -

C [F(t,)] = G [F(L,)] + C [F(t,))]1* - G [F(E))*

= C -G (F(t,)] + £(t) [RG - RC,)
rearranging the terms we get

£(t,) j;" [l -FOld (C -C) - F(t,) {1 -F(t)) (Cc~GC) =
C {1 - Ft,)) + £(t,) [RC, - RC]

£(t,)
1 - ¥(t,)

since h(t;) =
then h(t,) ];" [1 -F®ldt (G -C) -F(t,) {C -Gl =

G, + h(t,) [RC, - RG]
and this simplifies to

C -RC
1 - - = —L2_ & M
ke [ "1 -Flde-Fiey) o-C. he) | C ]

Now

Mean life during a cycle

Availability A (t,) =
Expected length of cycle
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B0 -Fe)+ [Pefoa
R, [1 - Fa)l » Ry (F)l + 1, [1 - Fe) + [ ¢ RO at

1 - Fo)) &
R, (1 - Fit)l + R IFG)1 + [* 11 - Fel &t

Setting da(t,)
\ =0
dt

woget { [ [1 - FOldt + RIF()] + RI1 - F(&)] } {1 = Fixy))

=i [YO-FOld ) (11 - M)+ RLE)] - RGN )

simplifying the equation above we get,

Ju-rore + mare) o+ om - RIFG)) -

Tt [T -FOId - RIFE) ] - BIX(E)] + RIF()]

[Fu-roa -rep fro-roe + 0 [Pu-rola )

Iy
N Rig)] - ¢ [PI-FOld ) RI2G)) )
v
Cancelling and rearranging the terms we get
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2ty 1 [P0 -FOld 1 R -1} - { ¥ty (R R, - RelPUEy))

+ RIF(,)] } = Rl = F(t,)]

and this can be simplified to

(205) [P0 -FOld 1 IR - R1} - ( FiL) [Re R =[F(E))] =

Re[1 - F(t,)]
Then
. T - . N
l_mf‘,n RO & - F6) = =2
M) [5 10 - PO & - Py - E‘E-'T,
'r
Rearranging the terms we have

fo" 1 - F()de = {l"(t’) + R,Ii’k'}h(lz')
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APPENDIX C. DESCRIPTION OF IMSL SUBROUTINE DQDAG

QDAG/DQDAG (Single/Double precision)
Purpose: Integrate a function using a globally adaptive scheme based on
Gauss-Kronrod rules.

Usage: CALL QDAG (F, A, B, ERRABS, ERRREL, IRULE, RESULT,

ERREST)
Argumsnts

F - User-supplied FUNCTION to be integrated. The form is F(X), where
X - Independent variable. (Input)
F - The function value. (Output)
F must be declared EXTERNAL in the callinp program,

A - Lower limit of integration. (Input)

B - Upperlimit of Integration. (Input)

ERRABS - Absolute ancuracy desired. (Input)
ERRREL - Relative accuracy desired. (Input)
IRULE - Choice of quadrature rule. (input)
A Gauss-Kronrod rule is used with
7 - 15 points If IRULE = 1
10 - 21 points If IRULE = 2
15 - 31 points if IRULE = 3
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20 - 41 points if IRULE = 4

25 - 51 points if IRULE = 5§

30 - 61 points if IRULE = 6

IRULE = 2 is recommended for most functions.

If the function has a peak singularity use IRULE = 1

If the function is oscillatory use IRULE = 6
RESULT - Estimate of the integrai from A to B of F. (Output)
ERREST - Estimate of the absolute value of the error. (Output)

Notes

QDAG is a general-purpose integrator that uses a globally adaptive scheme
in order to reduce the absolute error. It subdivides the interval [A,B] and uses a
(2k + 1)-point Gauss-Kronrod rule to estimate the integral over each subinterval.
The error for each subintarval is estimated by comparison with the k-point Gauss
quadrature rule. The subinterval with the largest estimated error is then bisected
and the same procedure is applied to both halves. The bisection process is
continued until either the error criterion is satisfied, roundoff error is detected, the

subintervals become too small, or the maximum number of subintervals allowed

is reached.




APPENDIX D. DESCRIPTION OF IMSL SUBROUTINE DCSINT

CSINT/DCSINT
Purpose:

Usage:

Arguments
NDATA

XDATA

YDATA

BREAK

CSCOEF -

Notes

(Single/Double precision)
Compute the cubic spline interpolant .
CALL DCSINT (NDATA, XDATA, YDATA, BREAK, CSCOEF)

Number of data points. (input)

NDATA must be at least 2.

Array of length NDATA containing the data point abscissas.
(Input)

Array of length NDATA containing the data point ordinates.
(Input)

Array of length NDATA containing the breakpoints for the
plecewise cubic representation. (Output)

Matrix of size 4 by NDATA containing the local coefficlents of
the cubic pieces. (Output)

DCSINT computes the second derivative cubic spline interpolant to a set of

data points (x,y,) for | = 1,2,...,NDATA = N. The breakpoints of the spline are the
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abscissas. Endpoint conditions are automatically determined by the program.
These conditions correspond to the "not-a-knot" condition, which requires that the

third derivativa of the spline be continuous at the second and next-to-last

breakpoint.




APPENDIX E. DESCRIPTION OF IMSL. FUNCTION DCEITG

CSITG/DCSITG (Single/Double precision)

Purpose: Evaluate the integral of a cubic spline

\ Usage: CSITG(A, B, NINTV, BREAK, CSCOEF)
' Argument
A - Lowaer limit of integration. (Input)
B - Upper limit of integration. (Output)
NINTV -  Number of polynomial pieces. (Input)

BREAK

Array of length NINTV+1 containing the breakpoints for the
plecewise cubic representation. (Input)
CSCOEF - Matrix of size 4 by NINTV+1 containing the local
coefficients of the cubic pleces. (Input)
DCSITG - Value of the integral of the spline from A to B. (Qutput)

, Notes

DCSITG evaluates the integral of a cubic spline over an interval. A cubic

spline is a piecewise polynomial of order 4.
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